
BFROST: Binary Features from Robust Orientation
Segment Tests accelerated on the GPU

Jaco Cronje
Council for Scientific and Industrial Research, Pretoria, South Africa

Email: jcronje@csir.co.za

Abstract—We propose a fast local image feature detector and
descriptor that is implementable on the GPU. Our method is
the first GPU implementation of the popular FAST detector. A
simple but novel method of feature orientation estimation which
can be calculated in constant time is proposed. The robustness
and reliability of our orientation estimation is validated against
rotation invariant descriptors such as SIFT and SURF. Further-
more, we propose a binary feature descriptor which is robust
to noise, scalable, rotation invariant, fast to compute in parallel
and maintains low memory consumption. The proposed method
demonstrates good robustness and very fast computation times,
making it usable in real-time applications.

Index Terms—Computer vision, Feature detection, Feature
extraction, FAST, GPU, BFROST

I. INTRODUCTION

Feature detection forms an important part of many computer
vision algorithms. Online image processing algorithms need
real-time performance, thus the speed at which features are
detected is crucial in many applications. Applications such as
Visual SLAM (Simultaneous localization and mapping), image
registration, 3D reconstruction and video stabilization need to
match corresponding image features between multiple views.
The detected corners or feature points need to be described
unambiguously so that the correspondence between multiple
views can be computed reliably. Real-time processing requires
the feature detection, description and matching to be as fast
as possible.

Modern day commodity GPUs (Graphics Processing Units)
provide a way to implement general purpose parallel algo-
rithms. The CUDA (Compute Unified Device Architecture) [1]
framework from NVidia provides a programmable interface for
GPUs.

FAST (Features from Accelerated Segment Tests) [2], [3]
is one of the fastest and most reliable corner detectors imple-
mented on the CPU (Central Processing Unit). By exploiting
the parallel computation power of CUDA, we propose a
solution to implement a similar feature detector on the GPU.
To our knowledge a feature detector based on accelerated
segment tests has not been implemented on the GPU before.
The algorithm provides an additional orientation estimation
for the detected feature that the original FAST implementation
does not provide.

This paper also proposes a feature descriptor similar to
recent features descriptors such as BRIEF (Binary Robust

Independent Elementary Features) [4] and BRISK (Binary
Robust Invariant Scalable Keypoints) [5], but which is robust
to noise, maintains low memory consumption and is fast to
compute, invariant to rotation, scale and lighting variations.
The binary feature descriptor is fully implemented on the GPU
with fast feature matching capabilities. We further refer to the
proposed detector and descriptor as BFROST (Binary Features
from Robust Orientation Segment Tests).

The remained of the paper is structured as follows: Feature
detectors and descriptors in the literature related to our work is
discussed in Section II. Our method is discussed in section III
which contains a subsection III-A that describes the GPU
implementation of our feature detector. Thereafter subsec-
tion III-B will provide information on our binary descriptor
followed by section IV that demonstrates some comparable
results. Finally section V concludes the paper.

II. RELATED WORK

Many feature detector methods are available in the literature.
Characteristics of robust detectors include invariance to image
noise, scale, translation and rotation transformations. The well
known SIFT (Scale-Invariant Feature Transform) [6] method
is very robust, but the computation time is not feasible for
real-time applications. GPU implementations for SIFT such
as GPU-SIFT [7] have shown an improvement on computa-
tion time, but remain slow for hi-definition real-time video
processing.

SURF (Speeded Up Robust Features) [8] improved on the
computation time of SIFT by using an integral image for fast
local gradient computations on an image. The open source
computer vision library (OpenCV) [9] contains a GPU version
of SURF. Although SURF executes faster than SIFT, SIFT
remains more robust. Both SIFT and SURF describe a feature
with a floating point vector. Matching between these vectors is
usually performed by computing the squared distance between
the vectors, which can be time consuming when matching
thousands of features.

Recently, binary feature descriptors have received more
attention. These descriptors are described with a binary string.
The distance between two binary strings can be described by
the Hamming distance. The Hamming distance can be rapidly
computed by performing the bitwise XOR operator between
the two strings and then calculating the number of set bits
within the result. Modern day hardware architectures support

instructions that can count the number of bits in a word rapidly.
CUDA devices with compute capability 2.x maps the popc
instruction to a single hardware instruction that counts the
number of set bits in a given word. Thus, matching binary
descriptors can be computed rapidly.

BRIEF [4] computes pairwise pixel intensity comparisons
to describe an image patch. Each comparison or test, results in
a binary value that forms the binary string. The image patch
surrounding the keypoint is initially smoothed before the 128,
256 or 512 comparison tests are then performed. The spatial
locations of the pixels used in each test on the image patch
are sampled from an isotropic Gaussian distribution. Figure 1
shows a typical BRIEF sampling pattern.

The BRIEF descriptor is fast to compute, the length of
the descriptor is adjustable and matching can be performed
efficiently. However, image patches need to be smoothed to be
more robust against noise, the spatial sampling pattern needs
to be rotated for the descriptor to be rotation invariant and the
descriptor does not scale well because of the discrete pixel
sampling.

BFROST scales well and is robust to noise because we use
the intensity of regions for comparison tests instead of discrete
pixels, our sampling pattern is not rotated to achieve rotation
invariance.

BRISK [5] inspired by BRIEF, also computes pairwise
comparisons to build the descriptor for an image patch. Instead
of using randomly selected sampling points, the method uses a
fixed sampling pattern consisting of 60 sampling points. Gaus-
sian smoothing is applied on the patch of pixels surrounding
each sampling point before the intensity value for each sample
point is retrieved. Figure 2 shows the sampling pattern.

The sampling points of the sampling pattern are stored in a
look-up table. This table contains a set of locations for each
rotation which takes up a total of 40MB memory space. The
rotation of the keypoint is estimated by examining the local
gradients at each sampling point. The BRISK method also
describes a method to determine the scale of the keypoint by
using image pyramids and non-maximal suppression to search
through the image scale-space.

BFROST does not require a large look-up table for our
sampling pattern, we also don’t need to perform Gaussian
smoothing on the sampling patches, we use a very fast rotation
estimation that requires no local gradient calculations.

The FAST [2], [3] detector detects keypoints by inspecting
the pixel intensities of sixteen pixels on a circle surrounding
the possible keypoint p. A positive classification occurs when
there exist a set of n continuous pixels on the circle which
are all brighter than the intensity I(p) + t or all darker than
the intensity I(p) − t, where t is the detection threshold
value. Illustrated in Figure 3. The most repeatable results
were obtained with n = 9. The strength of the keypoint is
given by the maximal value of t that still classifies p as a
keypoint, a simple binary search is performed to determine
the maximum of t. Machine learning is applied to construct
a decision tree classifier that can detect the feature at high
speeds. The decision tree is converted into a set of nested

Fig. 1. Typical BRIEF sampling pattern. Each line indicates a pixel intensity
comparison test. The image shows 128 tests. Taken from [4].

Fig. 2. The BRISK sampling pattern with 60 sampling points. The blue
solid circles denote the sampling points and the red dashed lines indicates the
standard deviation of the Gaussian smoothing applied at each sampling point.
Taken from [5].

if-else statements that can be compiled into C code.
FAST can quickly reject non-corner locations with only a

few if statements. BFROST use the same continuous pixel-set
criteria to detect keypoints. However using thousands of if-
else statements on a GPU is not feasible, if even compilable.
GPUs are very sensitive to branch instructions, especially if
different branches executes within the same warp. The next
section describes how we implemented the detector on the
GPU without the need for thousands of if-else statements.

Fig. 3. The 9 point segment test corner detection, taken from [3]. The
highlighted squares are the 16 pixels under inspection. The pixel at p is the
possible keypoint. The dashed line is passing through 9 contiguous pixels
which are all brighter than p by more than t.

III. BFROST: THE METHOD

Inspired by the FAST [2], [3] detector, we desired a similar
detector that is implementable on the GPU. A direct imple-
mentation of FAST in CUDA would not be feasible. Parallel
execution performance dramatically decreases when different
branches are executed within a block of threads on the GPU.
The original detector only classifies a pixel as a corner or
not and depends on other methods to extract the orientation
information from the detected image patch. We propose a
fast method for orientation estimation as part of our detector,
described in Section III-A1.

Memory transfers between the CPU and GPU can become a
bottleneck and should be kept to a minimum to achieve optimal
performance. We keep the detected keypoint information on
the GPU, perform non-maximal suppression and describe
the keypoints with our binary descriptor without transferring
excessive data between the GPU and the CPU.

Section III-A describes the feature detection method and
Section III-B describes the feature description method, fol-
lowed by a brief explanation on how to match binary descrip-
tors efficiently in Section III-C.

A. Feature Detection

The first implementation optimization to note is the memory
storage location of the input image on the GPU:

• We allocate a CudaArray of the image size and bind
the image data to this CudaArray. The tex2D tex-
ture sampling instruction is used on the CudaArray,
which is faster than reading from global memory. Texture
sampling will cache the sampled data and increase the
memory access performance.

• The texture filtering mode is set to point filtering such
that discrete points are sampled. No interpolation is
performed.

• The texture addressing mode is set to clamp any address
that falls outside the size of the image.

Consider the bit string B formed by comparing the pixel
intensity I(p) of pixel p with the sixteen pixels on a circle
around the pixel p under classification. Bi describes the bit
value of the ith pixel comparison on the circle. Thus, i is in
the range [0..15]. Let Ci be the ith pixel position on the circle
and t the detection threshold.

Bi =

{
1, for I(p) + t < I(Ci)

0, otherwise
(1)

The bit string B contains sixteen binary elements and when
converted to a decimal value, falls in the range of [0..65535].
For each of these 216 possible configurations, we determine
if the configuration classifies p as a corner or not and store
the binary result in a table. This look-up table of 216 binary
values are precomputed and stored as a binary string T . T is
uploaded to constant memory on the GPU. Note that 216 bits
= 8192 bytes, which is less than the 64KB constant memory
available on the GPU.

The feature detection process performs the following steps:

• Bind the input image to the CudaArray. Bind the look-
up table T to constant memory (Only if the table has not
been uploaded yet).

• Executes the feature detection CUDA kernel. One thread
is assigned to each pixel in the image.

• Each thread loads the center pixel p and sixteen surround-
ing pixels C0−15 into local thread memory.

• Each thread builds the binary string B by performing (1)
for all sixteen pixels on the circle.

• The binary classification value for B is read from T .
If the image patch classifies as a keypoint, the (x, y)
location of the pixel p is encoded into a 32 bit value and
written into a 1-dimensional buffer containing all detected
keypoints. The AtomicInc CUDA instruction is used
to retrieve the index at which the keypoint information
should be written. The atomic increment operation needs
to be used, because more than one thread can request
to write keypoint information into the buffer at the same
time.

• The binary string B and classification test is performed
twice, once with the I(p)+ t < I(Ci) test and then with
the I(p) − t > I(Ci) test. The same look-up table T is
used for both tests.

1) Rotation Estimation: The original FAST detector does
not provide an orientation estimate. We propose a very sim-
plistic method to estimate the rotation of a keypoint. Consider
a keypoint detected with continuous brighter intensities from
Ca to Cb where the detected segment length is >= 9. The
rotation index τ and rotation angle θ can then be estimated
by:

τ =


a+ b

2
, for a < b

a+ b+ 16

2
mod 16, for a >= b

(2)

θ =
2πτ

16
(3)

We create a look-up table that maps the binary string B to
the rotation index τ and upload the 216 byte vector to the
GPU for fast rotation estimation. The accuracy of the rotation
estimation can be viewed in Section IV.

2) Non-maximal Suppression: The strength of each de-
tected feature is calculated by finding the maximum value of
t for which the image patch still classifies as a corner. The
function on t is monotonic, which means that a simple binary
search can be performed on t to quickly find the maximal
value. Each thread in our CUDA kernel calculates the feature
strength for one keypoint. A keypoint index map is created
that maps an image location (x, y) to a keypoint index. The
index map ensures that the eight neighboring keypoints of any
given image location can be computed rapidly by performing
an index look-up into the index map.

The non-maximal suppression kernel executes one thread
for each keypoint. Each thread compares the feature strength of
its own keypoint to the feature strengths of the eight neighbor-
ing keypoints. The index map is used to determine the index
of the adjacent keypoints and whether they exist. All keypoints
with a strength greater than all of the neighbors, gets written
into the final detected keypoint buffer. The AtomicInc atomic
instruction is used again to avoid memory write conflicts.

B. Feature Description

Our fast binary feature descriptor relies on the usage of
an integral image or summed area table to sample image
intensity information from rectangular regions. Efficient GPU
implementations for integral images [10] do exist. Similar
to the BRIEF [4] and BRISK [5] descriptors, our descriptor
creates a binary string by comparing the sum of intensities over
regions within the image. The region based approach reduces
the effect of noise and makes the descriptor scalable.

1) Sampling Pattern: The sampling locations of the
BFROST sampling pattern stays fixed for all rotations and can
be scaled accordingly. The base pattern is uploaded to constant
GPU memory. Our pattern contains 64 sampling points, where
the BRISK [5] pattern contains 60 sampling points and the
number of BRIEF [4] sampling points equals the length of
their descriptor. Our sampling point offsets (X(i), Y (i)) for
each i in [0..63] with keypoint scale σ is calculated by:

r(i) = σ22+(i mod 4) (4)

φ(i) = d
i

4
e (5)

X(i) = r(i) cos(
2πφ(i)

16
) (6)

Y (i) = r(i) sin(
2πφ(i)

16
) (7)

At each sampling point we sample the sum of all pixel
intensities in a square region. Figure 4 shows the square
regions associated with each sampling point. The width and
height of the square region Z(i) for each sampling point is
determined by:

Z(i) =
πr(i)

8
(8)

Fig. 4. 64 Sampling point locations with their associated square regions.

2) Building the Descriptor: The BFROST descriptor is 256
bits long. Each of the 64 samples is compared with 4 other
samples to form the 256 bit descriptor. Let S(i) be the average
intensity of the square region sampled from sampling point i
and let M be the integral image computed from the input
image I . Let the location of the feature point j be x(j) and
y(j) in image space. The area of the square region is given
by n(i).

n(i) = (2r(i) + 1)2 (9)

S(i) =(M(x(j) +X(i) + Z(i), y(j) + Y (i) + Z(i))

+M(x(j) +X(i)− Z(i), y(j) + Y (i)− Z(i))
−M(x(j) +X(i) + Z(i), y(j) + Y (i)− Z(i))
−M(x(j) +X(i)− Z(i), y(j) + Y (i) + Z(i)))

÷ n(i) (10)

The description process works as follows:
• The CUDA kernel creates 32 threads for each keypoint
j. The block size is set to 512 threads. Thus, each block
computes the descriptor for 16 keypoints.

• Each thread samples two square regions, S(k) and S(k+
32) where k is the thread index for keypoint j. The
normalized sampled results are stored in shared memory.

• A syncthreads call is launched to ensure that all 32
threads receive the full set of 64 samples for the keypoint
through shared memory accessible across threads within
the same block.

Fig. 5. Complete testing pattern, generating a 256 bit descriptor.

• Each thread computes 8 binary values by comparing the
samples according to the sampling test pattern. The 8 bits
are compacted into a byte and written into the descriptor
global memory.

To form the 256 bit descriptor, each sample point i
is compared with four other sample points. The in-
dex of these four sampling points is specified by
((i+ 8) mod 64), ((i+ 24) mod 64), ((i+ 36) mod 64)
and (4φ(i) + 4 + (3− (i mod 4))). Figure 5 illustrates the
complete testing pattern with 256 comparisons. To achieve
rotation invariance on the descriptor, the index of the sampling
points is simply modified by adding 4τ when performing the
comparisons.

C. Fast Binary Feature Matching
The Hamming distance metric can be used to calculate the

distance between two binary strings. Suppose we have two
binary strings D1 and D2. Applying the XOR binary operator
on D1 and D2 will result in a binary string Dxor that contains
a binary 1 at each position where D1 and D2 differs. To
calculate the Hamming distance, we only need to count the
number of set bits in Dxor. CPU architectures support the
popcount instruction where as CUDA architectures support

the popc instruction. These instructions return the number
of set bits within the given variable, which gives us the
Hamming distance. Executing a XOR and popc instruction
is much more efficient than computing squared distances
between floating point vectors.

Our current feature matching implementation performs a
brute force matching scheme on the GPU. Future work will
include faster descriptor matching algorithms such as BK-
Trees [11]. Approximate string matching algorithms can be

(a) graffiti (b) boat

(c) wall (d) bark

Fig. 6. Datasets used for evaluation.

applied to the binary string matching problem that relates to
the binary feature matching problem in Computer Vision.

IV. RESULTS

The BFROST detector achieves similar repeatability when
compared to the FAST detector. The GPU implementation
executes faster as shown in Table I. The values reported are
the averages over 100 runs. Our detector detects slightly more
keypoints because the decision tree of FAST does not perform
a complete segment test. Timing comparisons were performed
on a NVidia GeForce GTX 460 for our GPU implementation
and on a Intel Core i7 2.67 GHz for the OpenCV [9] FAST
CPU implementation. Tests were performed on the first image
in the graffiti, boat, wall and bark datasets shown in Figure
6. The detection threshold as defined in equation 1 was set
to 40 for both detectors. Note that the time reported for
BFROST includes feature detection, non-maximal suppression
and orientation estimation while FAST only detected the
features and performed non-maximal suppression.

TABLE I
Feature detection comparison.

Image OpenCV FAST (ms) Keypoints BFROST (ms) Keypoints
graf 5.271 996 0.676 1022
boat 9.971 5509 1.017 5725
wall 12.181 9696 1.229 9899
bark 2.790 312 0.544 320

For descriptor evaluation purposes we transform the test
image with a known homography to produce a transformed
image. Keypoints are detected and described on both images.
For each keypoint in the test image we find the nearest
neighbor in the transformed image based on the distance
between the keypoint descriptors. We perform cross correlation
by matching the keypoints in the transformed image with

Fig. 7. Descriptor matching scores with in plane image rotations.

the keypoints in the test image and collect the matching
keypoints that only matched both ways. Because we know
the homography, the matching score is calculated by taking
the ratio between the number of inliers and the total number
of matched keypoints.

The graph in Figure 7 shows the rotation invariance of
our detector and descriptor by applying in plane rotations to
the graffiti test image. A higher matching score is better. We
compare our results with SURF [8] and SIFT [6]. Table II
shows the related computation time of each descriptor. Our
detector and descriptor out performs the popular SURF [8] in
rotation robustness and computation time. SIFT [6] remains
more robust but falls far behind with computation time.

TABLE II
Feature description time comparison between descriptors with a test image

rotated between 0 and 360 degrees with intervals of 5 degrees.

OpenCV SIFT OpenCV SURF BFROST descriptor
1259.98s 26.78s 0.08063ms

V. CONCLUSION

We have shown that a complete segment test detector can
be implemented on the GPU and that the computation time
of our detector is roughly 9 times faster than the popular
fast FAST detector. An additional benefit to our approach is
that the rotation estimation of the feature can be extracted
with negligible extra computation cost. The robustness of our
rotation estimation has been proven by comparison against
SIFT and SURF.

We have proposed a fast binary feature descriptor, which is
scalable, rotation invariant and more robust to noise than other

binary descriptors such as BRIEF. The descriptor maintains a
low memory requirement and doesn’t use excessive look-up
tables to obtain rotation invariance like BRISK. Fast binary
descriptor matching can be performed resulting in BFROST
being usable in real-time applications.

Future work will involve improving feature descriptor
matching speed by implementing fast tree based matching
algorithms on the GPU. Improving and incorporating accurate
keypoint scale detection that improves on the BRISK method.

REFERENCES

[1] NVIDIA-Corporation, “NVIDIA CUDA programming guide version
4.0.”

[2] E. Rosten and T. Drummond, “Fusing points and lines for high perfor-
mance tracking.” in IEEE International Conference on Computer Vision,
vol. 2, October 2005, pp. 1508–1511.

[3] ——, “Machine learning for high-speed corner detection,” in European
Conference on Computer Vision, vol. 1, May 2006, pp. 430–443.

[4] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “BRIEF: Binary robust
independent elementary features,” Computer Vision–ECCV 2010, pp.
778–792, 2010.

[5] S. Leutenegger, M. Chli, and R. Siegwart, “BRISK: Binary robust
invariant scalable keypoints.”

[6] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110,
2004.

[7] S. Sinha, J. Frahm, M. Pollefeys, and Y. Genc, “GPU-based video feature
tracking and matching,” in EDGE, Workshop on Edge Computing Using
New Commodity Architectures, vol. 278. Citeseer, 2006.

[8] H. Bay, T. Tuytelaars, and L. V. Gool, “SURF: Speeded up robust
features,” in In ECCV, 2006, pp. 404–417.

[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[10] B. Bilgic, B. Horn, and I. Masaki, “Efficient integral image computation
on the GPU,” in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE,
2010, pp. 528–533.

[11] R. Baeza-Yates and G. Navarro, “Fast approximate string matching in
a dictionary,” in String Processing and Information Retrieval: A South
American Symposium, 1998. Proceedings. IEEE, 1998, pp. 14–22.

