VERIFYING THERAPY SAFETY INTERLOCK SYSTEM WITH SPIN

Motlatsi Seotsanyafialaco Geldenhu§s

Council for Scientific and Industrial Research, Melintelligent Autonomous Systems,
Modelling and Digital Science Dept., P.O. Box 395,
Pretoria 0001, SOUTH AFRICA.

’Department of Mathematical Sciences, Computer Sei@ivision,
University of Stellenbosch Private Bag X1,
7602 Matieland, SOUTH AFRICA

Abstract — The ever-increasing reliance of society on comsuhas led to a need for highly
reliable systems. Computer systems perform crifisattions in a number of areas ranging from
online transaction processing (such as bankingesyst to embedded environments (such as
nuclear power plant safety control systems). Thigrelopment requires a higher level of
attention than many others, and the use formal odsths one way to ensure that they are as
correct as possible. This paper reports on theessfal use of model checking in the design and
verification of the Safety Interlock System (SI$)Ehemba LABS. SIS is part of proton therapy
control system (TCS) and its main task is to manétod evaluate the safety conditions in the
TCS as a whole. It looks after other dynamic systamd electronic units which may join and
leave the whole TCS either predictably or unpredilst, and oversees their distributed
interactions. An appropriate design pattern in #irgl of setup is the Observer, also known as
Publish-Subscribe or Dependents. Although not rnikevObserver pattern is receiving increasing
interest because of its usefulness in event-drisggstems. It encompasses a well-established
communications paradigm that allows any numberubjects (publishers) to communicate with
any number of observers (subscribers) asynchropa@ums anonymously via event channels. The
study focuses on the development of an abstractreoritation model between the SIS and the
systems it monitors. A number of important corress properties are verified with the SPIN
model checker.

1. Introduction

The ever-increasing reliance of society on compsystems has led to a need for highly reliablevso#® and
hardware systems. There are a number of areas whenguters perform critical functions ranging fromline
transaction processing systems, such as bankingnsysnd airline reservation systems, to embedaoexqbater
systems, such as manufacturing systems, automphilesraffic and space vehicle control systems;lear
power plant safety control systems, medical andtanl applications. In these areas the failure ebenputer
system may result in just mere inconvenience, emdndisruption, loss of time or even loss of lifeis clear
that the development of such systems requiresteehigvel of attention than any other type of systnd it is
also clear that the need for these kind of systestiscontinue to grow. The appropriate approachthis
situation is known as formal methods such as mddetking.

Formal methods refer to the use of mathemateshniques for the specification, development and
verification of software and hardware systems. Anbhar of success stories about the use of formahaudst
have been reported in the literature [1, 3, 4]. Mochecking is an automatic verification technidoe finite
state concurrent systems, and this paper reporthemsuccessful use of model checking in the deaigph
verification of the Safety Interlock System (SI$)Ehemba LABS. Model checking is one formal methbait
checks whether a model of a software/hardware wyssecorrect. The system is described using a dbrm
notation similar to a programming language, anddéssired correctness properties are expressedrasalés in
a linear temporal logic (LTL) [7]. A model checkinool determines whether or not the system satistie
properties and, if not, exactly how the properties violated. This valuable feedback can then dmd to
improve the system so that the violations are elat@d. This paper describes how model checkingused in
the design and verification of the Safety Interl&jstem at iThemba LABS.

The iThemba LABS (http://www.tlabs.ac.za) isnaltidisciplinary research facility involved in &ia and
applied research using particle beams, particlaotiagrapy for the treatment of cancer, the supply o
accelerated-produced radioactive isotopes for anateedicine and research, and similar activitiagréhtly,
iThemba is engaged in a new project called “Seddedm Line Project” (2BL), that involves an additidn

beam line for the treatment of cancer using prgtand the development of a system referred toa$ tierapy
Control System (TCS)An important feature of the TCS is that independpatts are interlocked (i.e.,
synchronized); the SIS is responsible for ensutheg the parts work together safely and smoothhyg &
therefore central to the operation of the TCS.

As one might expect, the TCS and its specificais large and complex. Because it is a conotiggstem, it
is easy to miss subtle timing errors using tradaidesting techniques, and model checking, whidtaastively
investigates all possible orderings of events,refe valuable supplement. This paper describesigheof the
SPIN model checker [6] in the design of the SISe Tesign is also enhanced through the use of a well
established design pattern known as an Observerefsoes called Publish-Subscribe). This patternptan a
powerful role in event-driven systems, and is emmgyenewed interest, also in the model checkingroanity
[2, 5, 8, 9].

The rest of this paper is organised as folld®extion 2 focuses on the specification of the iSI&lation to
other TCS systems. Section 3 gives an overviewSPEN specification of the system, and Section gcdees
some properties of interest and presents the sesiltheir verification. Finally, Section 5 concksl and
discusses some future work.

2. Safety Interlock System

The main task of the safety interlock system (3839 monitor and evaluate the safety conditionthensystem
as a whole, using inputs from the therapy safety (6B) and also hard wires from all over the TTCBe
components of the system consist of a compreheasramgement of relays, switches and transistotrothed
circuits which ensure correct and safe operatiooaditions at all times. There are two categorfdasterlocks:
personnel interlocks and machine interlocks thatiensafe operation of the whole TCS. These twsselare
not completely independent; personnel interlocksvigie safe and accurate delivery of patient treatme
prescription and protect the radiotherapy staff tiedgeneral public, while machine interlocks eaghiat the
machines are operated safely and prevent damagguipment. In this paper, both personnel and machin
interlocks are referred to as input interlocks amd classified as either discrete or non-discrBiscrete
interlocks communicate with the SIS via hard (pbgbi wires while non-discrete interlocks communrgcat
indirectly through the TSB. Indirect communicaticefers to the fact that the exact detail of whinteilock
failed is not known to the SIS. The TSB status ontiicates that some interlock has failed.

Ethernet hub

JITIE YIS +||.‘||.T Tq.

i
|FPs| | =5 | [Dmc| |[mVE|

g
&
L
Efam analveis system |Primafy /secgndary [nozzlgs E
o ES U RECU ek Ul i [y fomul B 5
E 3 3 r F ¥ ¥ r E
& Therapy safety bus t g
- (]
= ;
Iz MC | |PHC + gl
o _ Hl |PLC
[- ET-trip contral G
il _: Beam gabing control E,'h
% FiC 10/19 contral &l
-+ H M
E‘é_ﬁ R 1724 M8 contred E slC 2
ale
Accelerator feedback inberlodis
Therapy safety control system

Figure 1: Architecture of the 2BL

Figure 1 shows an overview of the system and sumitige electronic units and subsystems involveak fhick,

dotted arrow that runs from left to right in theddie of the figure shows the path of the physiaar. It
originates in the accelerator control (AC) systemd @asses through the beam analysis and contrt#nsys
(through the beam current, beam steering, and graegrader controller units), and through the primend
secondary treatment nozzles (through the two itinis@hambers, range modulator, range verifier, gaweral
electronic units) before emerging to treat the gudti At the top right is the patient positioningsgm, the
supervisory system, the dose monitoring systemtlaadiigh voltage power supply unit.

The heart of the system is the therapy safetytrol system, shown in the bottom right of Figdrelt
consists of the safety interlock system and thetenasd physics consoles (described in Section 2IBjhese
parts are connected in two ways: by a 13-line mgsan Ethernet network. The main purpose of the BB
provide a fast means by which any system of the T&8communicate its functional and hardware faguo
the rest of the system and, most importantly, ®3iS. Sections 2.1 and 2.2 present a detailediptsn of
the discrete and non-discrete interlocks, respelgtivand Section 2.3 explains two types of consties are
used to manipulate the interlocks. Sections 2.4.6-dscuss systems which directly interact with $h8.

2.1 Non-Discrete I nterlocks

Electronic units in TCS indirectly communicate gyststatus, requests and failures to the SIS vid & TSB
consists of a number of discrete wires which wiinbeforth be called TSB lines and each of theseslin
represents a specific status or request in the TI®®. TSB lines CONSOLE-ON, PRIMARY-NOZZLE,
SECONDARY-NOZZLE, and BEAM-ON communicate curregst®m configuration status to the SIS while
the TSB lines SABUS and HIGH-VOLTAGE-PSU communéatterlock failures. The TBS lines RF-TRIP
OFF, BEAM DEFLECTOR OFF, FC 1/2 & SHUTTER OUT, FO/19 OUT, PHYSICS MODE, and TEST
MODE are used to communicate requests to and fl@mrSIS. A current source is attached to each afethe
lines, so a TSB line has a value true if the curiefiowing through the line, and a value falstheswise. The
systems and components that communicate their séxjaed status through continuous (i.e., Non-Disgre
interlocks are beam current controller unit (BCCbgam steering controller unit (BSCU), energy degra
controller unit (EDCU), ionization chambers eleaim unit 1 (ICEU1), range modulator electronic unit
(RMEU), range verifier electronic unit (RVEU), ia@ation chambers electronic unit 2 (ICEU2), general
electronic unit (GEU), high voltage power supplyitufHVP), patient positioning system (PPS) and dose
monitoring system (DMC). All of these units can rba the status of the line, but the TSB does raaircethe
details of exactly which interlock failed, and ¢ds not possible for the SIS to identify the exaotirce of
failure. If the SIS detects a failure from any bétsystems and/or electronic units, the systemssead the
interlock statuses via the LAN to the supervisgrstem for displaying purposes.

2.2 Discrete Interlocks

Discrete interlocks are directly connected to tH& 8ia hard wires. The components and systems that
communicate in this way include general interlo¢®s), primary and secondary treatment nozzles azairb
line interlocks (TNBL), accelerator group interleackAGI), and room clearance interlock (RCI). Allete
categories of interlocks are manipulated by the FE#ey will henceforth be called TCS interlocksexcept

the AG category which is manipulated by the acegtgrcontrol systems. The interlocks can eitheetavalue
true or false and can also be overridden depermtintije mode in which the system is operating ire $tatus

of the discrete interlocks is transmitted via LAMNthe supervisory system for displaying purposes.

2.3 Master and Physics Consoles

In addition to the SIS, the TCS also includes nrastel physics consoles. The purpose of the mastesote
(MC) is to provide the user (radiation therapistipbwysicist) with a simple interface to select betwghysics,
test and clinical mode, to start and stop the beard,to perform an emergency stop at any time. physics
console (PHC) is physically separated from the M€Cibperforms the same functions as the MC. Omlg of
the consoles must be active at any given time. mhster console also provides the radiation thetraypth
feedback of the beam characteristics and doseaifglte the patient. The console also indicatestatus of the
TSB and the room clearance system status. The wgdeanance system is part of the therapy safetyrabnt
system which ensures the safe evacuation.

2.4 Supervisory system

Just like the master and the physics consolegpuhgose of the supervisory system (SS) is to peothe user
(radiation therapist or physicist) with the followsi: (1) a simple interface to select between plsygiest and

clinical mode, (2) to select between primary antbséary treatment nozzles, and (3) to start or gtegontrol
system. In addition, it can change the status ®fltBB lines just like any other system attachetthéobus lines
(see Figure 1). The SS is also responsible forlasmy the status of the TSB lines, room clearasygsem
interlocks, TCS interlocks and accelerator corggaitem interlocks.

2.5 Room clearance system

There is a fixed procedure that should be followedhake sure that the treatment room is armed (eady for
patient treatment). The room clearance system (RC&sponsible for ensuring that the followingi@as are
carried out: (1) There are eight emergency butthas are distributed around the treatment vault.edght
buttons must be in the “normal” position for theatment to begin. If at any point in time one afsh buttons
is pressed, the room must revert to a safe conditiat is, neither armed nor primed. The termrfyai refers
to the intermediate preparations of the room, é@n access door is ready to be closed. (2) Tieeegate
placed across the entrance to the basement ofeifignient room and this gate must be closed fotréagment
to begin. If at any time this gate is open, themmaoust return to the safe condition. (3) There @ar to the
annex off the maze and this door must be closeth®treatment to begin. If at any time this deoopen, the
treatment room must revert to the safe conditidhThere are two access doors in the partitionitheeside of
the beam-line. These doors must be primed and <®eseconds before the room is primed. When any of
these doors is open, its circuit is open and whes ¢losed its circuit is closed. If any of thedmors is not
primed and closed within 10 seconds the treatmawnitvmust return to the safe condition. (5) If #ie
conditions from 1 to 4 are satisfied, that is, r@ut for each device is closed, then the room bmayrimed for
evacuation. The priming is done by pressing an laxiton in the treatment room. (6) Once the room lien
primed, the operators have 40 seconds to leaveotita and close the boom gate at the maze exit.bboen
gate must be primed and closed for the treatmebegin and if at any time the boom gate is openrdioen
must be neither primed nor armed. If the boom gat®t closed within 40 seconds, the room mustnetw the
safe condition after which the room may be primedeoagain. (7) If the boom gate is primed withie th
allowed 40 seconds, the room may be armed at arg/diter the closing of the boom gate. This mehasdn
Ok signal is sent to the SIS.

2.6 Accelerator control system

There are two types of beam stop devices: a Faradaywhich is a cup shaped piece of copper aneugran
shutter, which is a steel cylinder for shieldingliedion. Both kinds of devices have two micro-sivés,
associated with each extreme movement of the dewibhch are used to detect whether the device ihén
beam line or not. There are five of these beam-deyices: (1) Faraday Cup 1: can be in or out @ttam line
and it is located at the end of the beam line, ihait is the last beam stop device just before ghtient. (2)
Faraday Cup 2: can be in or out of the beam lirkitis located between the cyclotron and the meushutter.
(3) Faraday Cup 10: can be in or out of the beamadind it is located next to the injector cyclotr@) Faraday
Cup 19: can be in or out of the beam line and libéated next to the main cyclotron. (5) NeutroutBdr: can
be in or out of the beam line and it is locatethia wall of the treatment room, that is, betweera&ay cups 1
and 2. The accelerator control (AC) system is rasjibe for extracting and inserting these devicatsad and
into the beam line in response to commands. Themsyproduces ten feedback outputs to the SIS toatel
whether a device is in or out.

3. Model Checking with SPIN

SPIN (Simple Promela INterpreter) is a model chegkiool developed at AT&T's Bell Labs by Gerard
Holzmann during the early 1990’s. It is still widaised and there is a yearly workshop organizedrat it.
While some other model checkers are more suit¢hetwerification of hardware (on the gate and dirlavel),
SPIN focuses on software verification of operatiygtems, data communication protocols, etc. Astimesd

in the introduction, a model checker performs amagstive search of a system’s executions, but SRINdes

a number of additional features such as guidedramdom simulations, and static analysis of C pnogral he
tool is easy to start to use, and its operatiolargely automatic: given a system description aodectness
property as input, it either outputs the “all-cletirthe property holds, or generates an example @folating
execution path if it fails to hold. A graphicalensnterface allows users to inspect the behawidunodels and
follow violating executions interactively. A revieof internal workings of SPIN is beyond the scofehis

paper. Interested readers are referred to Holzméowk [6] and the tool websitBitp://spinroot.com

3.1 An overview of PROMELA

The input language of the SPIN tool is called PRQAEPROtocol MEta-LAnguage). It is mostly based on
the C programming language and Dijkstra’s guardaehmand language. The basic elements are local and
global variables, processes, and communicationreianbut there is also some provision made farctired
data, functions, and macros. (A recent extensibth® tool also allows users to embed C code dyrent
models.) Inside processes, the behaviour of tlstesy is described using assignments and if- andewhi
statements, and processes can communicate ovenrsyiocs and asynchronous bounded-capacity channels
using send (!) and receive (?) operators. Theesharemory paradigm is supported through globalaiées.

All in all, the semantics of PROMELA is clogethat of a regular programming language, aparnfa few
subtle differences in semantics. In particular, isportant and powerful feature of PROMELA is non-
deterministic choice: this allows users to abstaaay irrelevant details and to concentrate oregsence of a
large system.

3.2 PROMELA Specification of the SIS

The observer design pattern defines a one-to-mapgritiency between interacting objects so that vaimen
object (the subject) changes state, all its dep®rd@he observers) are notified and updated autoatis.
Figure 2 depicts the interaction of the SIS wite TCS’s systems and other electronic units, aletéam the
observer notification services. We have, in faciltlseveral PROMELA models of the SIS to captuiféedent
aspects of the system. (We omit the complete medaetce code due to space constraints and provide an
overview of the source code shown in Table 1 tol@ &) In the particular model discussed here folces is

on the exchange of event messages between then8I8tlaer components. Its overall structure is shaw

Figure 2.
[tlabSys.tem[idj J [zyaltilit y(id) J

@ ii

[tlabbdediator) [Comrmuvnication / Conenmmency Contral } J

[fab3I3 () }C.ZD{ HlabACS()]

Figure 2: PROMALA Specification

The tlabSystem component represents TCS systemslectdonic units. It connects to the TSB and TiD8d

by sending a messagegister to the tlabsMediator component and unconnect fthese lines through an
unregister message. It also changes lines to either trualee fand emits two different messaggadéte and
notify) to the tlabMediator component. The sysUtility gmment takes care of administrative work for the
tlabSystem components, including receiving tigplay messages from other components. The tlabMediator
component encapsulates the interaction between a@oamis and promotes loose coupling of components. |
allows components to refer to each other expliciipd sends and receives messages to and from the
components except tlabACS component. The tlabAQ8poment is not part of the TCS and communicates
with the tlabSIS component directly. It receivesittol commands from the tlabSIS component and sends
feedback information back to it.

tlabSystem sysUtility
1 active[3] proctype tlabSystem(byte id){ 1 active proctype sysUtility(byte id){
2 bool registered[numinterlockTypes] = false, 2 byte fid;
3 interlock[numinterlockTypes]; 3 do
4 do 4 :: med2sysuUtility[id] ? notify(fid) ->
5 :id!=1 && registered[tsb] -> 5 :: med2sysuUtility[id] ? display(fid) ->
6 system2mediator ! readinterlock(id, tsb); 6 ..

7
8 ..
9 :id==1 && (linterlock[rcs] && registered[rs]) ->

mediator2system[id] ? interlockread(tsb)

7 od
8}

10 interlock|rcs] = true;
11 system2mediator ! update(id,rcs);
12 system2mediator ! display(0,rcs)
13 ::id == 1 && (interlock[rcs] && registered[rds->
14 interlock[rcs] = false;
15 system2mediator ! update(id,rcs);
16 system2mediator ! display(0,rcs)
17 od
18}
Table 1: the tlabSystem and sysUtility components
tlabM ediator

1 active proctype tlabMediator(){ 26 :: system2mediator ? update(id,fid) ->
2 tlabSystems system[numSystems]; 27 if
3 Dbyte id, sysid,fid; 28 2 (id ==0) ->
4 do 29 p(d==1)->
5 :: system2mediator?register(id,fid) -> 30 w(id==2)->
6 if 31 fi;
7 = (id==0)-> 32 mediator2sis ! notify(fid);
8 s(id==1)-> 33 sis2mediator ? notified;
9 s (id==2) > 34 sysid =0;
10 fi 35 do
11 system[id].registered[fid] = true 36 ::(sysid < numSystems) ->
12 :: system2mediator?unregister(id,fid) -> 37 if
13 if 38 ;o (sysid = id && fid !=rcs) ->
14 :(id==0)-> 39 med2sysUtility[sysid]!notify(fid) ->
15 x(d==1)-> 40 if
16 = (d==2)-> 41 m(id==0)->
17 fi 42 D(id==2)->
18 systemlid].registered[fid] = false 43 fi
19 :: system2mediator ? display(id,fid) -> 44 :: else -> skip
20 if 45 fi;
21 :(d==0)-> 46 sysid++
22 (d==1)-> 47 :: else -> break
23 (d==2)-> 48 od
24 fi; 49 :: system2mediator ? readinterlock(id,fid) ->
25 med2sysUtility[id] ! display(fid) 50 mediator2system([id] ! interlockread(fid);

51 ..

52 od

53}

Table 2: the tlabMediator component
tlabSIS tlabACS

1 active proctype tlabSIS(){ 1 active proctype tlabACS(){
2 Dbyte fid; 2 do
3 do 3 :sis2acc ? commands(ctrl) ->
4 :: mediator2sis ? notify(fid) -> 4 ..
5 .. 5 acc2sis ! feedback(fdb)
6 sis2acc ! commands(ctrl); 6 od
7 acc2sis ? feedback(fdb); 7}
8 sis2mediator ! notified
9 od
10}

Table 3: the tlabSIS and tlabACS components

4. Verification

The results reported in this section were obtaingld SPIN version 5.2.0 running on a laptop witji§abytes
of RAM and a 2.0 GHz CPU. Execution times refldo¢ work performed by the model checker and are
independent of the machine load. There are twindistategories of verification runs.

Systems States explored Memory (MB) Time (sec)
2 23,229 187.857 0.29
3 3,884,287 190.298 14.70
4 35,022,775 457.284 209.53

Table 4: Results for a full search of the stategpa

The first category focuses on a full searchhef state space for deadlocks, i.e., situations eviiez TCS
reaches a state where it “hangs”. Table 4 showsudt@me of this deadlock search in the TCS maafetvio,
three, and four systems. That is, the numbers “2”, and “4” in the first column of the table reféo the
number of the tlabSystem components in the PROMEIodel. These runs tell us that the TCS model is fre
from deadlocks. The values in the second columipe(éd “States explored”) reflects the number ofquai
situations that the model checker investigatesreflgcted in the table, this value grows expondgtias the
size of the model grows — a phenomenon known ade'stxplosion”. In fact, this is the main challeribat
prevents the model checking of very large systems.

The second category of verification runs death correctness properties that are specifih®TCS. They
include: (1) The SIS is notified for every updateeither the TSB or TCS lines. (2) The TCS systamd
electronic units will not be denied reading TSBT@S lines forever, if they are connected to the3h After the
SIS has sent control commands to the acceleratatratosystem, it will eventually receive feedback
information about the status of the beam devieBsA(system does not update interlocks if it is regjistered
(i.e., not connected to either TCS or TBS line§). A system does not receive a notification if striot
registered (i.e., connected) to either TSB or Ti@8sl And (6) the supervisory system does not sedigplay
message if it changes either the TSB or TCS line& just displays the information. But, other systeand
electronic units registered for the interlocks aatified of the change. The rest of this secti@stusses the
verification of the first four of the above proges in more detail. These properties address the co
functionality of the SIS. For example, the firsoperty can be adjusted to verify that, for evergtsgn that
modifies either the TSB or TCS lines, a notificatinessages is eventually sent to the SIS.

Properties Depth reached States stored Memory (MB) Time (sec)
P1 1,801,371 15,273,580 193.754 141.08
P2 5,138,511 9,903,514 849.675 85.65
P3 4,736,991 10,314,812 815.398 99.70
P4 6,702,307 14,767,202 808.580 124.92

Table 5: Results for correctness properties

P1: Linenotification

The first property states that the SIS is notified every update of either the TSB or TCS linestty TCS
systems and electronic units connected to the dseshown in Figure 1. In this case, supervisosyesy is used
to verify the property. The following labels aredad to the PROMELA specification: SSRegistered {§S
connected to the lines), SSUnregistered (SS isnmexied to the lines), ASystemUpdate (the SS update
lines), and SISNotified (the SIS is notified of ttleange). The LTL formula is then as follows:

[I!(tlabMediator[1]@SSRegistered && (<> tlabMediafd] @ASystemUpdate) &&
('tlabMediator[1]@SSUnregistered U (tlabMediato@ASystemUpdate &&
[I'stlabMediator[1]@SISNotified)))

SPIN is run to verify this property and the resalts shown in Table 5, in the first row. The resshow that
even though it consumed more time and explored states than other two properties, the depth rebahd
memory consumed were less than other two properties

P2: Noinfiniteread delays

The second property states that whenever a sysartswo read the TSB and TCS lines, it will eveltyuget

an opportunity to do so. Just like in the first peay, the specification is augmented with labeksdTSB and
TSBread in the tlabMediator component. These labetsnot added to the tlabSystem component after th

request to read and after the system receives dbgonse, since (in this case) tlabMediator mimies t
behaviour of connected wires (not communicatiorr @aveomputer network). The LTL specification is:

[I(tlabMediator[1]@readTSB -> <>tlabMediator[1]@T &&d)

As in the first case, this property is verified WiEPIN against the PROMELA specification. The resul
summarised in Table 5 show that this property coreslimore memory than the other three properties g1,
P3, and P4).

P3: Eventual feedback

The third property addresses another importantcisyfethe SIS’ tasks. For every notification to titebSIS
component, the tlabSIS sends control commandsetadhelerator control system and in response/ahA€S
will eventually receive feedback about the statishe beam devices. To verify this property, theela are
added to the specification. The label NotifySI&dsled after the tlabMediator has sent a notify agesso the
tlabSIS, the label SISsendCtrl is added after|#iESlS has sent a control message to the tlabA@Sihe label
SISgetFeedback is added after the tlabSIS recaifesdback message. The LTL specification is:

[l((tlabMediator[1]@NotifySIS && tlabSIS[8]@SISsedrl) ->
<> tlabSIS[8]@SISgetFeedback)

The property is verified with SPIN and the resdépicted in Table 5 show that the property produadesst
the same results as the second property.

P4: An event implies another event

The fourth property addresses another importarariamt requirement of the SIS’ tasks. The propstages that

if the tlabSystem is not connected to the TCS d Tiges, it will not update the lines. Thats is:
tlabSystem[4]@SYSUnregister ->! tlabMediato@$Y SUpdate,

where the label SYSUnregister is added after thieSystem component has sent unregister messagiend

label SYSUpdate is added after the tlabMediatorrbesived an update message. However, this projsentyt

valid when verified with SPIN due to asynchronoedwiour of the components, instead the followitadpitity

property is verified

[1 ((tlabSystem[4]@SY SUnregister && tlabMediator[@]SYSUpdate &&
<> | tlabMediator[1]@SYSUpdate) -> (tlabMediatorf@FY SUpdate U [] ! tlabMediator[1]@SYSUpdate))

As in the first three properties, the property ésified with SPIN and the results are shown in €ab] in the
last row. The results show that the property corslimmost the same memory as the second and tide thi
properties. However the states stored and thettien to verify this property are close to thapafperty one,
while the depth reached is just above that oneaferty two.

5. Conclusion and Future Work

This paper presents ongoing work on the designdendlopment of the TCS system. It described anviss
of the TCS and its components, and specifically 88 and its interaction with the rest of the syste
PROMELA models of the system were built and thermfaly verified with the SPIN tool. Our experience
with basing the models on the observer patterrbbas positive, and no errors in the TCS models ferned.

It should be pointed out that model checkielies on several key assumptions: that the modatésirate,
that all important properties are correctly formeth and that no important correctness propertynigtted.
However, this is true of all approaches to valiolatiincluding testing. The value of model checkiagot
limited to the fact that it can formally “prove”ahthe properties hold; often just building thenfiat model
already provides valuable insights for the systawetbpers about how their system operates. Inrégard,
the maturity of the iThemba LABS specification b&étTCS was particularly helpful in constructing oumdels.

Since the underlying structure of the TCS hesn modelled and verified successfully, in theritmore
detailed modelling and verification of each compttngan be addressed. In particular, we would tikéocus
on the details of the SIS, the supervisory systerd,the room clearance system.

6. Acknowledgements

The research conducted and reported on in thisrpapag funded by the Council for Scientific and Istfial
Research (CSIR), South Africa, The authors woltd lio thank Lebelo Serutla at iThemba LABS with his
advice and interpretation of the therapy safetgrlotk system specification.

7. References

[1] Bowen J. P. and Hinchey M.G. (1997) The usidiistrial-strength formal methods. IEEE Computer
Society Press, pages 332-337, 13-15 August.

[2] Mauro Caporuscio, Paola Inverardi, and PatrR@éliccione. (2002) Formal analysis of clients iligbin
the siena publish/subscribe middleware.

[3] E. M. Clarke and R. P. Kurshan. Computer-aidedfication. IEEE Spectrum, 33:61-67, 1996. Indite
article.

[4] Edmund M. Clarke and Jeannette M. Wing. (199@)mal methods: State of the art and future dioesti
ACM Computing Surveys, 28(4):626—643.

[5] William Deng, Matthew B. Dwyer, John Hatclifgeorg Jung, Robby, Gurdip Singh, and Gurdip Singh.
(2003) Model-checking middleware-based ewkiven real-time embedded software. In InProceeslofg
the #International Symposium on Formal Methods for Comguis and Objects, pages 154-181.

[6] Gerard J. Holzmann. (2004) The Spin Model CleecRrimer and Reference Manual. Addison-Wesley,
Lucent Technilogies Inc. Bell Laboratories.

[7] Zohar Manna and Amir Pnueli. (1992) The Tengbdiogic of Reactive and Concurrent Systems. Spring
Verlag New York, Inc., New York, NY, USA.

[8] David Garlan Serge, Serge Khersonsky, and 3owKim. (2002) Model checking Publish-Subscribe
systems. pages 166-180.

[9] Maurice H. tek Beek, Mieke Massink, Diego L#elStefania Gnesi, Alessandro Forghieri, and Maairi
Sebastianis. (2005) Model Checking Publishs8ribe Notification for thinkteam®, Proceedinddte
Ninth International Workshop on Formal Metkddr Industrial Critical Systems (FMICS 2004), pag
275-294.

