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Abstract

In this chapter, the concept of exposure assessment and its evolution is introduced, and evaluated by critically

appraising the pertinent literature as it applies to exposures to Particulate Matter (PM). Exposure measurement or

estimation methodologies and models are reviewed.

Three exposure/measurement methodologies are assessed. Estimation methods focus on source evaluation and at-

tribution, sources include those outdoors and indoors as well as in occupational and in-transit environments. Fate and

transport models and their inputs are addressed to estimate concentrations outdoors and indoors; source attribution

techniques help focus on the contributing sources. Activity pattern techniques are also reviewed and their use in ex-

posure models to estimate inhalation exposure to PM is presented. Deterministic, regression and other stochastic

models of exposure to PM are reviewed and evaluated.

Strengths, limitations, assumptions and affirmations of the use of exposure assessment as an integral component of

risk assessment and risk management are discussed in the conclusions and discussions section of this work.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Though used widely by many disciplines, exposure

assessment is a relatively new scientific endeavor of

public health. Its inclusion as an explicit component

of risk assessment started in the 1970s. The evolution of

risk assessment from the conventional six-step process to

the present seven-step methodology is illustrated in Fig. 1

(Moschandreas and Saksena, paper in this issue).

Because the term ‘‘exposure’’ is used to denote dif-

ferent concepts, the use and comparison of exposure

study results can be difficult. In this chapter, exposure

denotes the contact between an agent and the boundary

of a receptor. An agent is a substance known or sus-

pected to be toxic to the receptor. Receptors can be

humans, animals, trees, historical buildings or any other

ecological entity. The boundary of contact is an external

boundary. This chapter limits itself to one agent, the

class of particulate matter (PM) suspended in the at-

mosphere, to human receptors, and to the nose/mouth

inhalation boundary. PM is further classified by mass

concentrations in the total suspended particulate (TSP),

PM10, and PM2:5 size fractions (particles with aero-

dynamic diameters less than �30, 10, and 2.5 lm, re-
spectively).

Although inhalation may not be the most important

pathway of exposure for all pollutants, it is considered

the one of major concern for exposure to PM. Related

concepts, such as dose, will not be addressed in this

chapter.

The National Academy of Sciences suggests the fol-

lowing model as the fundamental expression for esti-

mating inhalation exposure to an agent (NAS, 1991):

E ¼
X

Cijktjk ð1Þ

where E is the inhalation exposure, the output of the

modeling effort, Cijk is the concentration of agent i, as-

sumed to be constant time, tjk in microenvironment (lE)
j where subject k spends time, and tjk is the time spent by
subject k in microenvironment j.

The following, more detailed, generic exposure model

should be considered in studying inhalation exposure to

PM and its constituents; it estimates total exposure as a

sum of exposures at each of the microenvironments:

Eijk ¼
Xoutdoors

ik

Ciktik þ
Xindoors

ik

Ciktik þ
Xoccupational

ik

Ciktik

þ
Xin-transit

ik

Ciktik ð2Þ

The symbols and subscripts denote variables indi-

cated in Eq. (1). Eq. (2) specifies the four microenviron-

ments that must be addressed; other microenvironments

are available and could be included but are considered

of less importance in this methodology chapter.

If the concentration were not assumed constant over

the time period of interest, then the above equation in-

Fig. 1. Risk assessment process: The early version of the risk

assessment process (in rectangles) did not include the exposure

element.
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volves integration over time. Other exposure expressions

are used to estimate exposures to pollutants in the in-

gestion and dermal absorption pathways.

Major variables of concern in the estimation of ex-

posure, Eq. (2), are the concentration of PM and its

constituents outdoors, in the residential environment, in

the work place and in-transit, and the time each subject

spends in each microenvironment. Investigators may

measure these concentrations or they may estimate

them. Relevant variables for estimating exposures are:

• major sources of PM in each of the microenviron-

ments and their emission rates,

• meteorological conditions that affect the transport of

pollutants from their source to the receptor site,

• other variables in fate and transport models selected

by the investigator for estimating agent concentra-

tions outdoors,

• several indoor variables that affect the amount of

agent that infiltrates indoors,

• time that subjects spend in each microenvironment.

The exposure scenario includes a list of all sources

considered and their emission rates, activity patterns of

receptors, and their time budgets, demographic charac-

teristics of the subjects, descriptions of microenviron-

ments and other attributes that describe fully the

exposure setting that is estimated by the investigator.

Ideally, the output of an exposure assessment is the ex-

posure profile that denotes the magnitude and the spa-

tial and temporal variation of exposure.

The expression of exposure as the sum of exposure

through all pathways (inhalation; ingestion in food,

water, or by putting fingers in the mouth; absorption

through the skin, etc.) and in all microenvironments in

which the subject spends time (outdoors, at home, at

work, during transit, etc.) has proven to be a useful

concept for understanding exposure to single chemical

species, such as lead, or to classes of chemical com-

pounds, such as chlorinated hydrocarbons from water

purification. PM is a complex mixture of particles of

different sizes, having different chemical and physical

properties, being produced by different sources, and

having different types and degrees of toxicity.

An alternate expression for inhalation exposure to

PM has been suggested by Wilson and Mage (1999).

Instead of the sum of exposure to all particles in several

microenvironments, exposure is expressed as the sum of

exposure in all microenvironments to particles from

several sources. Thus, instead of expressing exposure as

the sum of exposure outdoors, at home, in-transit, and

at work, exposure is expressed as the sum of exposure to

particles of ambient origin (both ambient particles while

outdoors and ambient particles that have infiltrated in-

doors while indoors), particles of indoor origin, particles

due to occupational activities, and personal activity

particles (particles due to smoking, hobbies or other

activities that impact the subject but not other people in

the same microenvironment).

This expression of inhalation exposure to particles

can be readily used if the concentration of particles of

ambient origin, that have infiltrated into an indoor

microenvironment, is calculated from the ambient con-

centration, the properties of the particles, and the

properties of the microenvironment. However, if the

model is based on measured concentrations of particles

indoors and outdoors, it will be necessary to disaggre-

gate the total PM found indoors into particles of am-

bient origin that have infiltrated indoors from outdoors,

particles of indoor origin, and particles due to personal

activity.

The expression of exposure to PM in terms of par-

ticles from different sources is useful for several reasons.

First, it is useful for risk assessment and risk manage-

ment. Currently, some information is available on the

relative toxicity of combustion products from various

types of fuels when used in open, unvented combustion

indoors. Relationships have also been found between

ambient particle concentrations and a variety of health

outcomes. No exposure–effect relationships have been

determined for particles. Toxicological studies suggest

that particles of different sizes and from different sources

will have effects that differ in both type and degree. This

is also suggested by the literature on uncontrolled in-

door combustion. If this concept of differential toxico-

logy is accepted, knowing exposure as a function of

source will allow targeting exposure reduction to the

most significant sources. In developed countries, fine

particles of ambient origin are probably of most con-

cern. In homes where fuels other than electricity are used

without adequate ventilation, particles of indoor com-

bustion origin may be of most concern. Relating health

outcomes to sources allows more effective risk manage-

ment by concentrating control on the most dangerous

sources.

This recent alternative to the conventional exposure

measuring/estimating methods, presented in June 1999

(Wilson and Mage, 1999), articulates a new avenue for

associating exposures to PM with sources and health

effects. The traditional methodology is to use one or

more of three methods for measuring or estimating ex-

posure: the direct, indirect or reconstructrive methods

(NAS, 1991).

The direct method measures the exposure of indi-

viduals to a pollutant(s) of interest using small and un-

obtrusive exposure sampling devices. This method is

also known as the point-of-contact method and mea-

sures the concentration of the pollutant at the point

or close to the point of contact with the individual.

This technique requires the cooperation of the subjects

participating in the exposure measurement (US EPA,

1997).
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The indirect method estimates exposures by measur-

ing or estimating pollutant concentrations at different

microenvironments where people spend their time.

These concentrations are weighted by the amount of

time individuals spend in these locations. This approach,

known as the scenario approach, requires measured or

estimated pollutant concentration, time-of-contact, de-

mographic and time budgets and activity information of

the exposed individuals. Building characteristics that

affect infiltration and indoor emissions, and inventories

of potentially contributing outdoor and indoor pollu-

tant sources are often obtained from questionnaires.

Outdoor concentrations of pollutant(s) may be mea-

sured at community representative sites or estimated

from source information combined with fate and

transport models. Inhalation rate can also be estimated

from activity information.

The reconstructive method measures levels of either

the agent itself or its metabolite in a target organ, and

estimates exposure levels backwards using pharmacoki-

netic models. It is possible to estimate exposure through

measurement of a biological marker. There is a contin-

uum between biological markers of exposure and of ef-

fect. At least theoretically, if the mathematical relation

between the various points on this continuum is fully

understood, then an outcome measure can be used to

reconstruct the extent of exposure. In fact, this is diffi-

cult and is limited thus far to just a few examples. The

difficulties are caused both by inherent variations in

human biology and by uncertainties in the pathogenic

processes between exposure and effect. Biological

markers on the exposure side of the continuum provide

a closer linkage to external exposure. This is particularly

true for measures of blood or tissue levels of the com-

pound itself, e.g., blood lead, exhaled benzene, and of its

ligands, e.g., carboxyhemoglobin.

Linkage of biological markers to external exposure

requires understanding of the four basic components of

absorption, distribution, metabolism and excretion.

Physiological based pharmacokinetic (PBPK) models

are used to estimate the relation between these different

compartments and to the external exposure levels.

Recent advances in analytical techniques, and par-

ticularly in the field of molecular biology, provide the

opportunity to develop new biological markers of ex-

posure and to improve our understanding of the link-

ages between external exposures and biological markers

of the continuum between exposure and effect.

The focus of this chapter is on the methodology of

the direct and indirect methods of exposure estimation,

thus the reconstructive or other alternative methods are

not discussed any further. The objectives of this chapter

are to:

1. Summarize methodologies for estimating or measur-

ing inhalation exposure to PM and its constituents.

2. Rank methods used in the literature as a function of

intended use of the results, complexity, accuracy and

resources.

Section 2 of this chapter addresses inputs and outputs

of the indirect method for assessing exposure, Section 3

reviews the direct method, while Section 4 addresses

advantages and shortcomings of methods discussed and

provides recommendations.

2. The indirect method of exposure estimation and source

attribution

The indirect method of exposure estimation models or

measures agent concentrations and the time people spend

in each microenvironment. These inputs are then used in

Eq. (2) to estimate exposures (see Fig. 2). The microen-

vironmental concentrations can be further attributed to

indoor and outdoor particle emissions by source or re-

Fig. 2. Options and components of the indirect method of calculating exposure.
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ceptor modeling. Source models estimate receptor con-

centrations from source emissions and meteorological

measurements and do not require microenvironmental

sampling except for model validation. Such validation is

usually necessary for at least some of the estimated

concentrations so it cannot be completely eliminated.

Receptor models infer contributions from different

source types by measuring chemical and physical prop-

erties of the sampled particles that are indicative of their

origins. These samples can be taken at fixed indoor or

outdoor monitors or mobile samplers for the indirect

method, or from monitors that follow the activities of

representative individuals through their daily activities.

The application of both source and receptor models al-

lows for further validation of both models, thereby in-

creasing confidence in their source attribution results.

2.1. Source model estimates of concentrations and source

contributions

Source modeling consists of three components: (1)

emissions rates from sources as a function of time and

location; (2) wind speed, wind direction, temperature,

relative humidity, pressure, and other atmospheric

properties at different times and locations that affect the

transport, diffusion, and deposition of the emitted

pollutants; and (3) transport, diffusion, deposition,

and chemical transformation mechanisms that simulate

changes in emissions between source and receptor.

2.1.1. Emissions rates and composition

Emissions inventories document temporal and spatial

emission rates based on activity levels, emission rates per

unit of activity, and meteorology (US EPA, 1998).

Emission rates per unit activity, or emission factors, are

determined from tests of representative sources within a

category. Representative industrial sources are usually

tested by hot stack sampling, in which air is extracted

and passed through a filter that is weighed before and

after sampling to measure particle loadings. Motor ve-

hicle exhaust emissions are sampled from diluted ex-

haust streams when on-road emissions are simulated on

a laboratory dynamometer. Residential fuel combustion

for heating and cooking emissions are also simulated in

laboratory conditions. Fugitive dust emissions from

paved and unpaved roads, construction, and agricul-

tural operations are simulated estimated from upwind

and downwind sampling.

Emissions factors derived from many tests on out-

door sources in the US are compiled by US EPA (1999)

and are regularly updated. Emissions factors for parti-

cles from indoor sources are not compiled in a single

resource and must be assembled from individual studies

(e.g., Yocom, 1982; Lionel et al., 1986; Koutrakis et al.,

1987; Bare, 1988; Lewis, 1989, 1991; Lofroth et al., 1991;

Samet and Spengler, 1991; Yocom and McCarthy, 1991;

Kim and Fergusson, 1993; Raiyani et al., 1993; Schare

and Smith, 1995; Wallace, 1996; Lioy et al., 1999). The

emissions factors derived for one source type or area

may not completely represent actual emissions from

similar source types in other areas. Emissions factors

derived for the United States almost certainly do not

represent the emitters in other countries, although they

are often used as a first approximation.

Emission factors are applied to activity levels that

often can be determined from databases compiled for

other purposes in a study area. Commonly used activity

levels are: (1) fuel consumed, product produced, or

material inputs for industrial sources; (2) vehicle miles

traveled, fuel sales, miles of roadway, or vehicle regis-

trations for mobile source emissions; and (3) population

density, number of households or businesses, amount of

residential wood or coal sold for area source emissions.

These data are often available from census statistics,

traffic demand models, roadway maps, tax records, land

use maps, and economic surveys.

For multi-component pollutants such as PM and

volatile organic compounds (VOC), source profiles are

used to allocate total mass emissions to chemical com-

ponents. Source profiles are determined by taking sam-

ples from representative sources and submitting them to

laboratory analysis for the desired chemical species.

Source profiles are also determined from representative

tests and represent the fraction of total PM or VOC

mass composed of a specific chemical species for more

details on this subject see article in this issue by Watson

and his associates, which describes the organic and in-

organic components found in various source emissions

and summarizes compilations of the profiles, mostly

from US sources.

Activity data are often unavailable for the spatial

scales desired of source models. US EPA (1998) annual

emissions estimates for the entire United States have the

resolution of US counties. This resolution is usually

insufficient for source modeling. Emissions rates are

often estimated for a larger area (e.g., a county, state or

province) and spatially allocated to a smaller area based

on a population census, land use map, or roadway

network. An accurate inventory for source modeling

often requires greater effort and expense than field

monitoring for concentrations and meteorology.

Emissions inventories are often used as source

models without meteorological measurements to de-

velop control strategies for linear rollback (Barth, 1970;

deNevers and Morris, 1975; Cass, 1981; Cass and

McRae, 1981, 1983). Rollback assumes that atmospheric

concentrations in excess of background are proportional

to aggregate emission rates. Reducing excessive con-

centrations of a pollutant to levels below a preset

standard requires emission reductions that are propor-

tionally equal to the relative amount by which the

standard is exceeded.
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Common categories of outdoor particle emissions

sources that must be considered in outdoor air are:

Gasoline exhaust: Every urban area includes vehicle

exhaust from light duty cars, light to medium duty

trucks and buses, and small engines. Emissions inven-

tories do not usually contain information about cold-

starts and visibly smoking vehicles, although these might

be discriminated by certain organic compounds in a

profile. Leaded gasoline is no longer used in the US, but

it is common in many countries and results in larger

particle emissions because vehicles that use it do not

have catalytic converters. Two stroke engines in small

vehicles, motorcycles, and utility engines combine oil

with gasoline and have substantially higher particle

emissions per quantity of fuel consumed compared to

four-stroke engines. Fuel sales and vehicle miles traveled

are the best ways to estimate the magnitude of emis-

sions. These can be spatially allocated based on vehicle

counts from different types of roadways and roadway

network maps.

Diesel exhaust: Every populated area contains heavy-

duty trucks and buses with diesel engines. Some areas

may also contain off-road equipment, stationary engines

for pumps and generators, and locomotives. Fuel sales

and vehicle counts with spatial allocation by roadway

are used to determine emissions in space and time.

Residential cooking, heating, and burning: Cooking is

common in all populated areas, while heating and

burning depend on climate and local regulations. The

appliance type and fuel make the biggest difference in

emissions rates. Natural gas, oil, coal, wood, trash, and

other biological materials are often consumed in these

activities. Differences in the types of appliance used and

burning practices also cause large variations in emissions

factors. Numbers of residences and fuel sales are often

used to determine the magnitude of these emissions and

to allocate them to their locations.

Fugitive dust: Fugitive dust results from non-ducted

open areas such as paved roads, unpaved roads, agri-

cultural tilling, construction, wind erosion, and indus-

trial aggregate. Cement, quarrying, and mining are the

main industrial emitters. Miles of roadway, locations of

construction sites, and maps of agricultural fields and

open areas are used as the bases for estimating the

magnitude and locations of emissions.

Industrial point sources: Power stations, copper

smelters, lead smelters, steel mills, aluminum mills, and

other large industries are easily identifiable and have

fixed locations. Their non-fugitive emissions are typi-

cally ducted through stacks and emissions factors can be

measured. Fuel use and amount of product are usually

used to estimate the magnitude of emissions.

Indoor emissions inventories include the following

particulate source types.

Infiltrated outdoor air: Doors, windows, and walls

can be treated as emitters, typically through the appli-

cation of an infiltration model. These depend on an

accurate estimate of outdoor concentrations, air trans-

fer rates, and particle losses as they pass through nar-

row openings, especially when doors and windows are

closed.

House dust: House dust results from infiltration,

track in, and indoor generation activities. It is often

suspended by vacuuming and sweeping as well as indoor

personal movement.

Cooking and heating: Fuel combustion as well as the

type of food being cooked and the cooking method

cause indoor emissions. A large fraction of these may be

vented by a cooking hood with an exhaust fan to out-

doors.

Environmental tobacco smoke (ETS): Cigarettes,

cigars, and pipes create directly emitted and inhaled

and exhaled particles. These can linger and disperse

throughout an enclosed area.

Animal dander and fur: Domestic pets such as dogs

and cats shed skin and hair. Human occupants also

represent a source of these.

Molds, spores, and fungi: These material forms in

moist locations and in house plants. Ventilation ducts

are often breeding grounds as well as methods to cir-

culate these throughout an enclosure.

Vehicle exhaust: Although externally emitted, a

fraction of vehicle exhaust enters into the passenger

area. This is also an important infiltration source during

commuting as most vehicle compartments are close to

the exhaust from neighboring vehicles. Warming up cars

in indoor garages creates exhaust that can infiltrate into

living areas of a home.

Occupational emissions: There are a large variety of

occupational emissions, depending on the type of work

involved.

2.1.2. Meteorological data

Meteorological data are a fundamental inputs for the

accurate assessment of the fate and transport of air

pollution through modeling. These data are used to

either calculate the concentration of a pollutant at a

receptor through dispersion, as in the case of source

models, or to determine possible source regions con-

tributing to measured concentrations at a specific re-

ceptor (receptor models). Consequently, all models that

determine fate, transport, or origin of atmospheric pol-

lutants depend on meteorological parameters as input.

All dispersion models require core parameters (Table

1). These include surface wind direction, wind speed, air

temperature and cloud data. In addition, upper air data,

typically measured twice per day, determines wind,

temperature, and humidity changes with height (Schulze

and Turner, 1996).

Steady-state Gaussian plume dispersion models

require hourly single-point meteorological data at the

surface and an upper air station to estimate the mixing

928 D.J. Moschandreas et al. / Chemosphere 49 (2002) 923–946



height. More sophisticated models, such as non-steady-

state puff and Eulerian models generally require more

comprehensive meteorological data from multiple me-

teorological stations (Table 2). In addition to the core

parameters, these models require atmospheric pressure,

humidity, precipitation, turbulence parameters, solar

radiation, and where applicable, sea-surface temperature

data.

The representativeness or adequacy of meteorologi-

cal data is an important element in accurately modeling

the dispersion of air pollution. The observational

meteorological data used for pollution modeling is gen-

erally regarded as adequate if a sufficiently dense cov-

erage of stations at the surface and aloft exists over the

modeling domain, including all relevant physical and

climate zones. In addition, all the meteorological

parameters necessary for modeling have to be measured

on a fine temporal resolution. Often, especially in de-

veloping countries, the spatial coverage and temporal

resolution of observational surface and upper air mete-

orological stations is inadequate, or even non-

existent over the domain where dispersion modeling is to

take place. Accuracy of the data can also be questioned

where inadequate instrumentation, training and per-

sonnel render data subjective.

A common error made by investigators when ob-

servational data is unavailable in the modeling domain

is to use data from distant stations such as airports.

These distant measurements often do not adequately

represent conditions in the study area owing to differ-

ences in terrain, coastal effects, urbanization, and syn-

optic features.

Local terrain generally modifies wind conditions

through a number of processes. Firstly, by channeling

wind along valleys or around topographic obstacles,

thereby resulting in directional and/or velocity modifi-

cation. Secondly, local topography such as katabatic/

mountain flow by night and anabatic/valley flow by day

create a unique, localized circulation that can return

aged pollutants to mix with fresh emissions.

Land–sea temperature differences result in a ther-

mally driven circulation. By day, a sea breeze with on-

shore flow at the surface may develop that progressively

extends inland by late afternoon to up to a 100 km or

more in some cases. A return flow aloft is often associ-

ated with the sea breeze. At night, the reverse occurs

with the establishment of a land breeze with offshore

flow at the surface. This diurnal circulation may have

important ramifications for the dispersion of atmo-

spheric pollutants and the use of distant observational

data may not reflect such circulation.

Modification of the local energy budget through ur-

banization has the effect of locally increasing atmo-

spheric turbulence and mixing height, with important

consequences for the dispersion of pollutants over the

city. Also, increased roughness length and urban can-

yons modify the urban wind characteristics significantly

over relatively short distances.

The representativeness of observational data from

meteorological stations distant from the modeling

domain may also be affected by synoptic weather events.

Specifically, the remote observational station may be

influenced by transient meso- and synoptic-scale weather

systems not affecting the modeling domain. This may

lead to an inaccurate assessment of meteorological

conditions in the study area.

Table 1

Typical meteorological data requirements and characteristics

for steady-state and non-steady-state dispersion models

Steady-state

models

Non-steady-state models

Data charac-

teristics

Discrete data Gridded data

One-dimen-

sional data

Three-dimensional

data

Fine temporal

resolution

Fine temporal

resolution

Core parame-

ters

Wind direction Wind direction

Wind velocity Wind velocity

Temperature Temperature

Upper air data Upper air data

Additional

parameters

Precipitation

Relative humidity

Turbulence parameters

Atmospheric pressure

Solar radiation

Sea surface temperature

Table 2

Comparison of meteorological data generation

Type Observations Generated

NWP modelsSurface stations Upper air stations Mast Remote sensing

(tethersonde/SODAR)

Vertical resolution Single (1.2 m) Up to �50 mb 10–100 m Up to 1500 m �5–25 levels
(up to 300 mb)

Horizontal resolution Discrete data Discrete data Discrete data Discrete data Gridded data

Temporal resolution 1 hourly 12 hourly 1 hourly 1 hourly 1 hourly

Data collection period >1 year >1 year >1 year >1 year �3–5 months
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A number of solutions are possible to remedy these

potential shortcomings of observational meteorological

data. These include the establishment of an improved

observational network representing conditions in the

study area, or, in what is usually a more cost-effective

option, the generation of site-specific meteorological

data using meteorological models.

Site-specific meteorological data can be collected for

an area with a paucity of existing data using a number of

means. Firstly, a weather station, where hourly surface

observations can be complemented with twice daily

upper air soundings can be considered as a long term

investment by weather services. Secondly, a meteoro-

logical tower with continuous measurements for heights

up to 100 m. Thirdly, measurement of wind velocity,

direction, temperature and humidity profiles within the

mixing layer can be conducted through tethersonde or

remote sensing devices.

Monitoring is generally time-consuming and expen-

sive. All monitoring methods take longer than a year to

collect a year of data; and operating costs are high. For

example, the costs for a single meteorological tower for

one year are typically in the range of several tens of

thousands of dollars for measurements at a single loca-

tion. Data coverage over the domain may still be inad-

equate with a single measurement station, so often

multiple measurements are required to adequately rep-

resent meteorological conditions.

An alternative method is to apply prognostic nu-

merical weather prediction (NWP) models to establish

the meteorological conditions where few or no obser-

vational data exist. The model output is typically grid-

ded on a fine resolution (typically 10–30 km horizontal

resolution), and at 15–25 levels in the vertical. Wind

speed, wind direction, temperature, humidity and other

variables are produced by the model output to cover the

domain. In a data assimilation mode, the NWP models

use whatever observational data may be available to

‘‘nudge’’ the solutions of the relevant equations toward

the observations. The NWP data can then be combined

with fine-scale geophysical features to produce fine-

scale, site-specific localized meteorological fields.

NWP models can be used to generate meteorological

fields relatively quickly. When run in a data assimilation

mode, it would typically require 3–6 months to generate

a full year of meteorological data up to the size of an

entire medium-sized country for approximately the same

cost as a single monitoring site. Data from such a

modeling study can be generated for any part of the

world using routinely available global model data sets.

Once generated, this synthetically generated meteoro-

logical data set can be used for many years for different

modeling studies within the domain.

An example of this approach to acquisition of

meteorological data is a study conducted in western Can-

ada. An irregular network of widely spaced surface and

upper air stations in British Columbia and Alberta re-

sulted in a paucity of data coverage over much of these

large provinces. The Mesoscale Model Version 5 (MM5)

model (Grell et al., 1994) was used to generate a full-year

database of hourly meteorological profiles at 20 km

resolution at over 8000 locations. For about the cost

of constructing and operating a single meteorological

tower, the use of a meteorological model generated an

annual data set of hourly meteorological profiles cov-

ering the entire two-province area. In addition, the NWP

generated meteorological fields are of a finer temporal

resolution than the observed upper air data (hourly as

opposed to twice daily). The US EPA sponsored the

generation of a similar database covering the continental

United States, southern Canada, and northern Mexico

with 80 km horizontal resolution. This meteorological

modeling approach is especially suitable for cost-effec-

tively generating meteorological databases in developing

countries where observational networks may be even less

fully developed than in Canada and the United States.

2.1.3. Fate and transport models

For evaluating the inhalation component of expo-

sure, source models are used to produce estimates of

pollutant concentrations in the ambient air at receptor

points placed within the modeling domain. As shown in

Table 3, the model requires information on the location,

strength, and type of various sources, pollutant prop-

erties, meteorological data, and geophysical character-

istics of the area to estimate pollutant transport,

dispersion, chemical transformation, and depletion. The

results are a set of pollutant concentrations at arbitrarily

defined points (often at thousands of points throughout

the modeling domain) for each pollutant of interest. The

modeling produces time series of hourly average con-

centrations at each receptor point for each pollutant.

Coupled with population census data and time budget

information for categories of individuals, the outdoor

exposure to each pollutant can be estimated. The am-

bient concentration predictions of the source model may

be used as input to other models such as indoor air

pollution models and in the occupational and in-transit

exposure assessment.

In general, source modeling is applied when there is a

reasonable understanding of the emissions inventory. In

some cases, primarily for major point sources such as

power plants, chemical plants, refineries, or incinerators,

the emissions data are based on direct measurements

made at the stack. More often, the emission estimates

come from application of empirical relationships based

on similar types of sources, from surrogates such as

population density or fuel consumption, or from emis-

sions models (e.g., the MOBILE5.0 model for traffic

emissions, or the emissions production model (EPM)

(US Forest Service emission model from fires)).
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The inventory of emissions is an important input into

the source model. The modeling is best performed iter-

atively with feedback from ambient concentration ob-

servations or results from receptor modeling used to

correct or refine elements of the inventory. Although it is

essential to have a good quality meteorological database

to drive the fate and transport model, it is possible to

derive the necessary meteorological data from the out-

put of a prognostic NWP model (see Section 2.1.2), even

in the absence of local observational meteorological

data. Diagnostic meteorological models can be used to

develop site-specific, fine-scale wind flow fields reflecting

the local transport conditions using either the NWP

model output and/or local observational data as input.

The other data sets required by the modeling (pol-

lutant properties and geophysical data) are normally

obtained from standard databases. The exception is in-

formation on local particle size distributions, which

should be derived from local data.

Source modeling estimates source contribution from

individual emitters at many receptor points over a wide

geographical area including pollution monitoring sites.

The influence of factors such as terrain elevation, the

presence of water bodies, urbanization and variations in

surface conditions can be evaluated. Air quality mea-

surements have limited and often undefined zones of

representation due to these factors. Modeling can help

better define a monitoring station�s zone of representa-
tion. An air quality model can provide quantitative

information about individual or group source contri-

butions and detailed time- and space-resolved concen-

tration patterns. Air quality model results assist in

deciding source siting, land use planning and effective-

ness of proposed emission reduction strategies. Models

can develop real time, short term meteorological and

dispersion forecasts leading to the possibility of opera-

tional emission controls to mitigate impacts during high

exposure episodes.

An advantage of source modeling for developing

countries is that modeling costs are low when compared

to monitoring programs. Simulation of one or multiple

year periods can be done with the simpler plume and

puff models in the time frame of months (once emissions

estimates have been established), with fairly modest (PC

based) computer resources. The accuracy and precision

of source model estimations under local conditions

should always be evaluated by independent means.

2.1.4. Overview of source modeling approaches

Table 4 summarizes the major strengths and weak-

nesses of each of the four modeling approaches: steady-

state plume models, non-steady-state puff models,

particle models, and Eulerian grid models. More details

are provided in the article by Scire and D�Abreton
(paper in this issue). The most widely used type of air

quality model is the steady-state Gaussian plume model

(Turner, 1970, 1979) as implemented in the industrial

source complex short term (ISCST3) model (US EPA,

1995), and in many other community codes.

The Gaussian plume model provides relatively robust

concentration estimates when the basic assumptions of

Table 3

Fate and transport models––input requirements

Input requirement Description Source of data

Pollutant source inventory � Emission rates (including diurnal,

seasonal or arbitrary variation factors)

� Previous inventories

� Point sources � Stack parameters � Surrogate measures (population, fuel use, etc.)

� Mobile sources � Source locations

� Area sources � Empirical emission factors (e.g., AP-42)

� Direct measurements (source testing, CEM

measurements)

Pollutant properties � Chemical characteristics (pollutant

solubility, reactivity, etc.)

� Chemical databases

� Particle size distribution � Empirical reference data

� Direct measurements

Geophysical data � Terrain elevations � Worldwide terrain and landuse datasets

� Land use categories � Buoy/ship datasets

� Overwater data (air–sea temperatures) � Model output of derived parameters

Meteorological data � Wind speed, direction � Surface observations

� Temperature profiles � Upper air observations

� Humidity � NWP model output

� Pressure � Satellite data

� Cloudiness

� Precipitation
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the model are met. However, plume models are often

applied inappropriately in situations well beyond the

conditions for which they are valid. In selecting a

modeling approach, it is essential to understand the

limitations and assumptions of the technique.

The most important assumptions of typical steady-

state models are: (1) wind speed, wind direction and

atmospheric stability are constant throughout the study

domain; (2) plumes move in straight lines; (3) when a

receptor is downwind of the source, the plume reaches

the receptor, regardless of the source–receptor distance;

(4) only emissions from the current time step affect the

concentrations at a receptor during that time step; (5)

there is always a measurable wind and calm winds are

not treated.

Meteorological conditions are often approximately

uniform over short distances (over distances of a few

kilometers) in flat terrain. However, this is often not the

case over larger distances or in complex terrain, coastal

environments, or in urban areas. Wind and dispersion

conditions can change dramatically in these situations

and emissions from prior hours may be significant

contributors to pollution levels in the current hour.

In the steady-state plume modeling approach, each

hour is independent of every other hour. There is no

‘‘memory’’ of emissions released during previous time

steps, and as a result, the model cannot handle situa-

tions such as stagnation, recirculation, valley trapping

or nocturnal build-up of pollutants. These are common

occurrences in complex terrain situations (stagnation

and valley trapping) or in land–sea breeze conditions

(recirculation). The assumption of steady-state condi-

tions implies that the emission time is long compared to

the transport time of the pollutant to the receptor. It

also implies that the meteorological conditions (wind

speed, direction, stability, etc.) do not change during the

transport. This assumption is unlikely to be valid much

beyond 10 km in most situations. In complex terrain

applications, the assumption of straight-line plume tra-

jectories may even be invalid a few hundred meters from

a source if, for example, the valley orientation changes.

Steady-state plume models do not account for the

‘‘causality’’ effect, i.e., they assume that source emissions

immediately disperse to the receptor without accounting

for source/receptor transport time. This assumption is

invalid for travel times that approach a typical time step

of 1 h. For wind speeds of 1–5 m/s, maximum distances

from a source are too short for urban scale source as-

sessments. Steady-state plume models should not be

used beyond about 10 km from a source due to causality

considerations, even if the other conditions for their use

are met. Although a cut-off distance of 50 km for the

Table 4

Summary of model features

Type Examples Advantages Limitations Computational

requirements

Steady-state

(plume) models

ISCST3

FDM

� Simplicity

� Moderate data requirements

� Instantaneous transport

� Straight line plumes

Low PC

� Modest computational requirements � No pollution build-up

� Simulate annual or multi-annual

periods

� Uniform meteorological

conditions

� Calm wind conditions not

modeled

Non-steady-

state (puff)

models

CALPUFF

INPUFF

� Realistic transport

� Causality

� Pollution build-up

� Non-uniform meteorological

conditions

� No non-linear chemistry

� Puff superposition

� Costly for shear and puff

coherence

Low to

moderate PC

� Calm conditions

� Linear chemistry

� Source contributions

� Simulate annual or multi-annual

periods

Particle models KSP

MODTRAC

� Puff advantages

� Shear effects

� Episodic modeling only

� High level of expertise required

� Limited evaluation history

� Complex

High to very high

workstation

Eulerian grid

models

CAMx

UAM

� Non-linear chemistry

� Shear effects

� Large sources inventories

� Episodic modeling only

� Numerical diffusion

� High level of modeling expertise

required

� Source contributions difficult

High to very high

workstation or

supercomputer
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steady-state models has been used in the past (US EPA,

1995), the decision was driven by the lack of appropriate

modeling tools for treating causality effects. Modeling

techniques have advanced sufficiently to permit appli-

cation of non-steady-state models that simulate com-

plexities of urban and regional scale.

Contributions from surface or near-surface emis-

sions of low buoyancy pollutants are often highest

during stable light/calm wind events because dilution is

minimized, and vertical dispersion of the emissions is

reduced. Steady-state plume models assume that the

downwind dispersion is negligible relative to plume ad-

vection, which is not valid under light wind speed con-

ditions. Steady-state models either enforce a minimum

wind speed of about 1 m/s or do not perform calcula-

tions during the light wind speed events. Therefore,

surface releases of non-buoyant pollutants are not

properly simulated by the standard steady-state model

during the meteorological conditions expected to lead to

their worst case impacts.

Puff models represent emissions as a number of dis-

crete packets of pollutant material. Each packet (or puff)

is allowed to move with the local wind and evolve in

time independent of other puffs. The puff approach does

not require that steady-state conditions exist, so it can be

applied to a larger range of conditions than a steady-

state model. Two of the more commonly used puff

models are the INPUFF model (Petersen, 1986) and the

CALPUFF model (Scire et al., 1999). As meteorological

and emission approach steady-state conditions, puff

models are often constructed to approach the steady-

state plume results. Thus, to the extent that the steady-

state models are valid, the puff model will reproduce

their results. However, when conditions deviate from

steady-state, the puff model better represents pollutant

transport, dispersion and accumulation.

The main advantages of the non-steady-state model

are that they use full three-dimensional meteorological

fields with spatial and temporal variability. Thus,

changes in the flow due to terrain, water bodies, local,

meso-scale, or synoptic-scale are accounted for in the

simulations. Curved trajectories and causality effects

(source receptor travel times) are represented. Contri-

butions from earlier emissions, such as build-up during

stagnation or recirculation are added to the contribu-

tions reaching the receptor during the current hour.

Puff models can be run with commonly available

desktop computers. Simulation times are perhaps 10

times those of steady-state models for a large number of

sources, but a full annual simulation can be completed

in one day or one week on a PC.

Puff models require a higher level of modeling ex-

pertise than steady-state models, especially in the defi-

nition of the meteorological fields. This can be achieved

by training programs. Assumptions of puff superposi-

tion, linearity of chemical reactions, lack of puff splitting

during wind shear and puff coherence need to be eval-

uated. Some of the complexities can be addressed by

appropriate selection of puff model software options.

In a particle model, the plume is represented as a

series of individual particles, sometimes hundreds or

thousands of particles that are individually transported

through the atmosphere (e.g., the kinematic simulation

particle (KSP) mode, Yamartino et al., 1996). Each

particle is subjected to advection by a mean wind and to

perturbations by a turbulent wind fluctuation. Particle

models offer the potential to simulate both the mean

concentration as well as the concentration distribution

about the mean. This distribution simulates short term

peak concentrations (e.g., for highly toxic acute expo-

sure over minutes or seconds, or in odor assessments).

Particle models treat highly complex flows, including

strongly sheared flows and spatially inhomogeneous

meteorological conditions. Because particle models are

non-steady-state models, many puff model features

apply (e.g., ability to treat causality effects, pollutant

build-up during stagnant conditions, and low wind

speed conditions).

Particle models are computationally intensive, re-

quiring high-end workstations or supercomputers; par-

ticle models are not currently practical for large source

inventories or for long simulation times. There is a high

level of expertise needed for running particle models,

and substantial data requirements, including a high

quality meteorological data set including turbulence

fields. The operational evaluation history of particle

models is limited, so it is not clear if the theoretical

advantages of the approach will be realized in practice

with actual data sets. At this time, particle models are

primarily research models rather than operational tools.

Eulerian or grid models solve the equation of con-

servation mass through numerical methods. The atmo-

sphere is divided into coupled boxes or grid cells within

which pollutants are assumed to be uniformly mixed.

Table 4 lists several examples of common Eulerian

models. These models accommodate non-linear chemi-

cal reactions, which are necessary for photochemical

modeling that estimate ozone and secondary aerosol

concentrations. Simulation time is independent of the

number of sources but increases with the square of the

number of grids and linearly with the number of boxes.

For containing thousands to tens of thousands of

sources, there is a crossover point at which Eulerian

models become less computationally intensive than puff

or particle models. Eulerian models handle highly

sheared flows well.

Disadvantages of Eulerian models include high

computational costs, numerical diffusion and insufficient

mass conservation (associated with the approximate

numerical solutions of the conservation equations), the

need for substantial computer and modeling expertise,

and the treatment of each grid as a well-mixed box.
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Some grid models imbed plume or puff models to ac-

count for the fact that source emissions do not mix

instantaneously throughout the grid containing the

source. This immediate grid mixing does not represent

sub-grid-scale chemical reactions or concentrations close

to an emitter. Individual source contributions are diffi-

cult to estimate with Eulerian grid models, as there is no

unique solution that accounts for the individual contri-

butions to the total concentrations at a receptor. The

model must be run with and without the emissions of

interest to determine individual source contribution.

2.1.5. Indoor models

Computational fluid dynamics (CFD) and Markov

chain models are research methods used to estimate

multi-zone indoor concentrations or three-dimensional

indoor pollutant concentrations. Development of these

models is in progress and their evaluation has been

limited to studies performed in chambers. Both of these

types of indoor air quality models require extensive

computational capability, their application is con-

strained by lack of knowledge of flow patterns in en-

closed environments. While promising, these types of

modeling methods are not used for estimating exposure

to pollutants, rather models based on mass-balance

principles are used and will be addressed below.

Mass-balance based indoor air quality models as-

sume uniformly mixed conditions within an effective

volume jV , where j is a proportionality constant, rather

than the total, structural, volume V (see Appendix A).

Indoor air quality models use the following variables as

inputs for estimating indoor air pollutant concentra-

tions: outdoor pollutant levels, multiple indoor sources

and their emission rates and indoor activity. Occupant

activity indoors affects indoor source emission rates,

building air exchange rate, and effective volume, as well

as flow rates of cleaning device(s), if present, and their

efficiency, a function of their maintenance status (Mos-

chandreas, 1995). The heating ventilating and air con-

ditioning (HVAC) system of a building affects indoor air

quality both positively and negatively. It serves as a

pollution control device by bringing fresh air from

outdoors and thus diluting indoor-generated pollutant

levels; it also filters and absorbs some contaminants. The

HVAC system may degrade indoor air quality if it is not

maintained properly and is unable to perform at design

levels. Under certain conditions the HVAC system

provides nutrients for bio-pollutants and becomes a

source of pollution indoors. Several models are capable

of estimating air exchange rates of a building, and,

others, emission rates of indoor sources within a build-

ing (Moschandreas, 1995). A general indoor air model is

shown in Appendix A.

Methodological questions specifically associated with

developing countries include concerns of exfiltration,

semi-enclosed spaces, plume buoyancy and mixing,

and natural dust and resuspension and degradation of

building materials. It is common to observe smoke

leaking from a house in a developing country because of

the comparatively high loading of PM within small

spaces, the buoyancy of the plume from the cookstove,

high air exchange rates (about 10 h�1), and the open

architecture of the kitchen (including highly porous

building materials) that are found in many developing

country homes. A portion of this smoke infiltrates into

the same house immediately without mixing to any sig-

nificant degree with the outdoor air. Another portion of

the smoke mixes with the outdoor air and then infiltrates

into the same house. These conditions need to be mod-

eled differently from situations found in developed

countries. Properly modified multi-compartment models

that treat the near ambient air as a compartment, the

box within a box approach, may be a practical alter-

native. It would be desirable to validate these models

under both controlled conditions (test chambers) and

field conditions, thereby removing the influence of ETS,

resuspension, etc.

A related concern is the smoke leaking from one

house and infiltrating into neighboring houses. Devel-

oping a model that estimates ambient outdoor concen-

tration near the house would be very useful in assessing

risk, source apportionment and predicting overall ex-

posure reduction benefits of cookstove related inter-

ventions. Such a model would focus on an individual

house or on the center of a housing cluster and estimate

levels at breathing height due to the cumulative effect of

many houses in a cluster and the indoor concentration in

the houses. Such a model may predict that population

exposure may not reduce significantly unless every house

in a cluster switches to cleaner fuels/stoves. Additional

complexity arises from the fact that houses in a cluster

use different fuel and cook at different times. For ex-

ample, kerosene-using houses may experience high ex-

posure levels as compared to wood using houses. Such

conditions have not yet been modeled in developing

countries, though studies have attempted to measure the

extent to which ambient air quality within a cluster can

deteriorate during cooking periods (Naeher et al., 1999).

Finally, an entire cluster of biomass using houses could

contribute significantly to urban pollution levels.

Occupants of many rural and urban poor homes in

developing countries cook in spaces that are not en-

closed by four walls and a ceiling. Kitchens have three

walls with or without a roof (i.e., the entrance is entirely

open), or the kitchen may have four walls with a roof of

plastic, tin or thatch. Frequently, these sheets are placed

few inches above the top of the walls with a gap between

the walls and the roof. The ‘‘indoor’’ volume and the

exceedingly high air exchange rates above 50 h�1 of such

structures pose special problems for indoor air quality

modeling. Models used for conventional houses will not

simulate these conditions.
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An easily visible and demarcated plume emanates

as a vertical column from the cookstove; within the

kitchen, it rises a few feet before dispersing horizontally.

Only anecdotal evidence is available on these observa-

tions. Typically, the vertical region from the floor, the

base-level of the cookstove, to about 3 ft is relatively less

polluted. A layer of air 2 ft above this lower region has

the highest indoor concentration, the region above that

has moderate level concentrations. The exposure con-

sequence of this is that in many situations the woman

cook who squats on the ground just next to the stove is

perhaps exposed to lower levels of smoke than those

standing or sitting in the middle region of the room.

Recently Saksena (1999) observed that personal RSP

concentration (d50 ¼ 5 lm) of a sample of mothers who
were cooking was significantly less than that of the

concentration measured simultaneously by stationary

samplers placed near their infants about 1 m from the

wood stove. This pattern was not observed in the homes

of kerosene users. Thus, there is a need to develop

models, that can include the plume effect and imperfect

mixing.

Natural dust and resuspension and degradation of

building materials are important sources because they

add complexity and reduce our ability to interpret data

collected from combustion related conditions. Results

from a study of 80 urban slum households (Saksena,

1999) indicate that indoor background levels of RSP

have a mean value of 200 lg/m3 in houses with no major

indoor combustion or other emission sources of RSP.

Clearly, these sources must be incorporated in indoor

modeling efforts.

2.1.6. Occupational and in-transit exposures

The type of indoor model discussed above can be

used in non-industrial work environments such as offi-

ces. The investigator must be cognizant of the size of the

building and assure that the volumes assumed to con-

stitute a uniform microenvironment are not too large,

are served by the same air-handling unit and have no

unusual sources of emission. If the model configuration

is more complex one may wish to employ models spe-

cifically constructed for office buildings.

Industrial indoor environments are subject to more

rigorous regulation than non-industrial work environ-

ments. Additionally, industrial environments are domi-

nated by one or few sources that are well defined;

measurements are made when it is considered appro-

priate. Information on levels in industrial environments

may be found in the literature and can be obtained from

the Occupational Safety and Health Administration

(OSHA) and can be used in estimating exposures. When

indoor sources emit, estimated or measured emission

rates are used as input variables to indoor models. There

is an in-transit component of exposure to pollutants, but

indoor air models specifically for cars, trucks and buses

are not available. While the volume of the in-transit

microenvironment is small, the ventilation rate as the

sum of mechanical, natural and infiltration is large for

automobiles and trains. A first order approximation

may be the use of outdoor concentrations as a surrogate

for in-transit levels.

2.2. Receptor model estimates of concentrations and

source contributions

Microenvironmental concentrations can be measured

with area sampling. When chemical components of PM

are measured that come from different source types,

receptor models can be used to estimate source contri-

butions, see article by Watson and coworkers in this

issue.

True receptor models are not statistical black boxes.

They are based on the same scientific principles as

source models, but they are explanatory rather than

predictive of source contributions. Receptor models in-

clude the enrichment factors (EF), chemical mass bal-

ance (CMB), eigenvector analysis (also termed principal

component analysis (PCA), factor analysis (FA), and

empirical orthogonal functions), multiple linear regres-

sion (MLR), neural networks, cluster analysis, Fourier

Transform time series, and a number of other multi-

variate data analysis methods. Chemical models em-

bedded in source-oriented models can also be used as

receptor models to estimate how emissions characteris-

tics might change between source and receptor and to

determine limiting precursors for secondary aerosols

that form during transport.

2.2.1. Source profiles

Receptor models do not require the spatial and

temporal resolution for emissions rates that are needed

for source models. They do require an identification of

outdoor and indoor source types and the chemical or

physical properties that are believed to distinguish their

contributions once they arrive at a receptor. The emis-

sions rates described above must be supplemented with

these source profiles to apply receptor models. Source

profiles are the mass abundances (fraction of total mass)

of a chemical species in source emissions. Source profiles

are intended to represent a category of source rather

than individual emitters. The number and meaning of

these categories is limited by the degree of similarity

between the profiles.

Chemical or physical properties that are believed to

distinguish among different source types are measured

on representative emitters. A large variety of chemical

and physical components can be measured in source and

receptor samples. The sampling methods, flow rates,

sample duration, and substrates for microenvironmental

and source sampling must be selected (Chow, 1995).

Elements (Watson et al., 1999), ions (Chow and Watson,
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1999; Chow et al., 2000), and carbon fractions (Chow

et al., 1993) are commonly measured.

In geological material, aluminum, silicon, potassium,

calcium, and iron have large abundances with low

variabilities. The total potassium abundance is 15–30

times the abundance of soluble potassium. Lead is

sometimes abundant in paved road dust, probably due

to deposition from previously emitted leaded-gasoline

vehicle exhaust. Elemental carbon (EC) abundances are

highly variable in geological material, and are often

negligible in natural soil samples. Organic carbon (OC)

is typically 5–15% in geological emitters. Motor vehicle

emissions (e.g., brake and tire wear, oil drips) could

result in greater abundances of lead, EC, and OC in

paved road dust. Soluble sulfate, nitrate, and ammo-

nium abundances are low, in the range of 0–0.3%. So-

dium and chloride are also low, with less than 0.5% in

abundance. Larger abundances of these materials may

be found temporarily soon after roadway deicing,

however.

In vehicle exhaust, OC and EC are the most abun-

dant species in motor vehicle exhaust, accounting for

over 95% of the total mass. The abundances of organic

and total carbon can be quite variable in motor vehicle

exhaust profiles. Lead, bromine, and chloride are good

markers for gasoline exhaust in areas where leaded fuels

are used, but lead is quickly being eliminated in most

areas and is completely gone from fuels used in the

United States.

Organic and elemental carbons are also abundant in

burning and cooking, but the OC fraction is much larger

than EC when compared to the vehicle exhaust profiles.

The soluble to total potassium ratios of 0.80–0.90 in

burning profiles (Calloway et al., 1989) are in large

contrast to the low soluble to total potassium ratios

found in geological material.

Coal-fired power generation profiles differ substan-

tially from residential coal burning, even though the

fuels are similar, owing to the different emission control

technologies. Sulfate is one of the most abundant con-

stituents in the particle phase and sulfur dioxide levels

can be hundreds to thousands of time higher than the

particle mass. Sulfur dioxide is a good indicator of

contributions from nearby coal-fired power stations for

which it has not reacted or deposited significantly during

transport to a receptor. Crustal elements such as silicon,

calcium, and iron in the coal-fired boiler profiles are

present at 30–50% of the corresponding levels in geo-

logical material with the exception of aluminum (Al)

which is present at similar or higher levels than those

found in geological material. Other elements such as

phosphorus, potassium, titanium, chromium, manga-

nese, strontium, zirconium, and barium are present at

less than 1% levels. Selenium is often a good indicator of

coal-fired power station emissions with no scrubbers or

wet scrubbers, but not in emissions from a unit with a

dry limestone scrubber. Selenium is usually in the gas-

eous phase within hot stack emissions, and it condenses

on particles when air is cooled in the dilution chamber.

There are similarities in chemical compositions for

different sources. However, using source profiles from

one airshed or time period may not provide a valid re-

ceptor model apportionment for microenvironmental

samples in another area or in another time period.

Source emissions of precursor gaseous and primary

particles are highly variable due to differences in fuel use,

operating conditions, and sampling methods. Source

and ambient measurements must be paired in time to

establish reasonable estimates of source/receptor rela-

tionships.

Elemental measurements by themselves are neces-

sary, but insufficient, for a receptor modeling study.

Chemical speciation must also include ammonium, sul-

fate, nitrate, OC, and EC. Simultaneous gas measure-

ments as well as other characteristics of suspended

particles such as organic compounds, isotopic abun-

dances, and single particle characteristics are to better-

define source categories.

2.2.2. Receptor measurements

Outdoor and indoor samples are often taken only to

determine the mass of particle loadings, and these

samples are not always amenable to the chemical ana-

lyses needed for receptor modeling. A material balance

is a preliminary source apportionment that allocates

TSP, PM10, or PM2:5 to geological material, OC, EC,

sulfate, nitrate, ammonium, and possibly salt (from

marine aerosol, deicing, or windblown dry lake beds).

Although not a source apportionment, the material

balance provides guidance on which components are the

major cause of excessive mass concentration. This

knowledge can focus efforts to improve the emissions

inventory for source modeling.

Quartz fiber filter samples that are commonly taken

in outdoor and indoor studies are sub-optimal for

chemical analysis, but they are commonly available

throughout the world. They can be analyzed for ele-

ments, ions and carbon, although their background

levels may result in degraded detection limits and the

inability to detect some important elements such as

aluminum and silicon. Volatile components such as

ammonium nitrate often evaporate from these samples if

they are not adequately maintained. If it is known that

chemical analyses will be applied to some or all samples,

filters can be acceptance tested prior to use and stored

under refrigeration after sampling to minimize interfer-

ences and maintain sample integrity. Additional sam-

plers with filter media appropriate for other analyses can

be co-located with the compliance sampler. Mini-volume

ambient samplers or personal exposure samplers have

been adapted for this use.
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2.2.3. Receptor model application

All of the multi-variate models include, implicitly or

explicitly, a CMB that quantifies source contributions.

The CMB (Watson et al., 1984, 1990, 1991) expresses

each aerosol property concentration measured at a re-

ceptor as the sum of a source contribution multiplied by

the abundance of the corresponding aerosol property in

the source emissions. When these equations are not

collinear (i.e., source profiles substantially differ among

different emitters) and the chemical abundances in the

source profile are reasonably constant (i.e., standard

deviations less than half the average abundance for

representative source tests), these equations can be

solved for the source contributions. Source profile

abundances and the receptor concentrations, with ap-

propriate uncertainty estimates, serve as input data to

the CMB model. The output consists of the amount

contributed by each source type represented by a profile

of the total mass and of each chemical species.

The CMB modeling procedure requires: (1) identifi-

cation of the contributing source types; (2) selection of

chemical species or other properties to be included in the

calculation; (3) estimation of the fraction of each of the

chemical species which is contained in each source type

(source profiles); (4) estimation of the uncertainty in

both ambient concentrations and source profiles; and (5)

solution of the CMB equations. The effective variance

weighted solution (Watson et al., 1984) is almost uni-

versally applied because it: (1) theoretically yields the

most likely solutions to the CMB equations, providing

model assumptions are met; (2) uses all available

chemical measurements, not just so-called ‘‘tracer’’

species; (3) analytically estimates the uncertainty of the

source contributions based on precisions of both the

ambient concentrations and source profiles; and (4)

gives greater influence to chemical species with higher

precisions in both the source and receptor measurements

than to species with lower precisions.

CMB model assumptions are: (1) compositions of

source emissions are constant over the period of ambient

and source sampling; (2) chemical species do not react

with each other (i.e., they add linearly); (3) all sources

with a potential for contributing to the receptor have

been identified and have had their emissions character-

ized; (4) the number of sources or source categories is

less than or equal to the number of species; (5) the

source profiles are linearly independent of each other;

and (6) measurement uncertainties are random, uncor-

related, and normally distributed.

The degree to which these assumptions are met in

applications depends to a large extent on the particle

and gas properties measured at source and receptor.

CMB model performance is examined generically by

applying analytical and randomized testing methods,

and specifically for each application by following an

applications and validation protocol. The six assump-

tions are fairly restrictive and they will never be totally

complied with in actual practice. Fortunately, the CMB

model can tolerate reasonable deviations from these

assumptions, though these deviations increase the stated

uncertainties of the source contribution estimates.

An applications and validation protocol (Watson

et al., 1991): (1) determines model applicability; (2) se-

lects a variety of profiles to represent identified con-

tributors; (3) evaluates model outputs and performance

measures; (4) identifies and evaluates deviations from

model assumptions; (5) identifies and corrects model

input deficiencies; (6) verifies consistency and stability of

source contribution estimates; and (7) evaluates CMB

results with respect to other data analysis and source

assessment methods.

Since no model, source or receptor, is a perfect pic-

ture of reality the results must be independently chal-

lenged. Receptor model source contributions should be

consistent between locations and sampling times. Dis-

crepancies between source contributions estimated by

source and receptor models must be reconciled. Fig. 3

illustrates a comparison between relative PM2:5 source

contributions estimated from an emissions inventory

and a CMB source apportionment at an urban site in

Denver, CO during winter, 1996 (Watson et al., 1998).

The emissions inventory gives the impression that fugi-

tive dust is the major contributor, while its relative

contribution is much lower in the ambient samples.

Secondary ammonium sulfate and ammonium nitrate

are significant contributors that are not part of a pri-

mary particle inventory. These are only estimated by a

chemical transport model that also includes emission

rates for sulfur dioxide, oxides of nitrogen, and ammo-

nia. Cold starts are identified by the receptor model but

not in the emission inventory, indicating that this source

should be included in future inventories. The inventory

identifies natural gas combustion and other industrial

sources that are not distinguished by the receptor model

because they do not have chemical profiles that differ

from the other, more dominant contributors.

2.3. Human activity patterns

Tools for collecting information about human ac-

tivities include surveys, questionnaires, time/activity di-

aries, automated systems such as global position sensing

monitors, and observations. Questionnaires are used to

collect human activity data and help determine who is

exposed, and the magnitude, frequently, location and

source(s) of exposure. Activity data can provide distri-

butions, measures of central tendency and measures of

variability of behavior within a population or of an in-

dividual over time and space.

Certain information from these instruments can

be used as surrogates for exposure measurements. The
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number of cigarettes smoked, time spent cooking over

an unvented stove, occupation, location and type of heat

source in a home, or the distance of a person from diesel

exhaust at a bus depot are examples of potential sur-

rogates for exposure. Presence, maintenance status and

type of the HVAC system, time spent by an individual in

a location or microenvironment and the time of day or

season of the year spent in that location are examples of

information gathered by questionnaires that relates to

factors potentially affecting exposure. If the response to

a question(s) is numerical, it is possible to estimate the

relative magnitude of an effect on exposure. Categorical

groupings are also used in exposure estimates, but cat-

egories are often simplistic (yes or no), and subtle

degrees of influence of the categorized variable on ex-

posure cannot be determined.

Selection of a specific instrument depends upon the

study objective, community characteristics, and bud-

getary constraints. Brief surveys are useful when large

population based studies are conducted and the objec-

tive is to characterize the distribution of general expo-

sure variables within the population. Questionnaires and

surveys are administered either in person, over the

telephone, or by mail when the focus of the desired

information is the household and not the individual.

Questionnaires and surveys differ only in the level of

detail of questions and therefore in the length required

for response. Questionnaires provide greater detailed

information about exposure activities at one point in

time or general information about historical exposures

of individuals.

Surveys and questionnaires typically attempt to

characterize sources of exposure in terms of occupation,

household activities, personal habits, travel activities,

and household characteristics. These instruments usu-

ally also collect demographic information such as age,

gender, race or ethnicity, and some indicator of socio-

economic status (SES) such as household income or

education level. SES is often found to be associated with

different personal habits such as smoking (Malstrom

et al., 1999), with type of heating and cooking fuel, and

with other potential sources of exposure, while age has

been associated with differences in activity patterns, ex-

posure to air pollutants and ventilation rate (Spier et al.,

1992; Shamoo et al., 1994).

Time/activity diaries typically focus on specific ac-

tivities and exposure related information of the indi-

vidual. Diaries collect information about where a person

spends time. Time/activity diaries collect specific expo-

sure information such as when and where one cooked

dinner or the number of cigarettes smoked in each lo-

cation at what time and so on. By collecting information

repeatedly over time, the diary collects multiple snap

shots of an individual and can therefore identify the

person specific patterns of exposure, including episodic

frequency and duration (Freeman et al., 1999). Time

activity diaries have helped in understanding human

activity patterns (Robinson, 1977; Chapin, 1984; Juster

and Stafford, 1985). Time activity diaries are composed

of two parts: a time line and a time budget. The time line

identifies a person�s use of space during the day, typi-

cally in terms of at home, at work, and in-transit, with

more detail about specific microenvironments such as at

home indoors and at home outdoors. The time budget

identifies activities that occur throughout the day start-

ing when the person awakens. Often the time budget

detail asked is greater than the interests of the study, but

may be useful in guiding the participant�s memory about

Fig. 3. Comparison of emission inventory and receptor model source apportionment for Wintertime Denver, CO.
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the day�s activities. Diaries have replaced short term

recall questions in questionnaires since it has been found

that recall is often difficult for participants (Robinson,

1985). Diaries, unless administered by an outside party,

require literacy on the part of the participant, a sense of

time, and usually an extended period of commitment

(typically a week) to the study. The extended time period

is necessary to evaluate the variations in activities that

might occur from day to day or from season to season.

This increased participant burden can lead to lower re-

cruitment rates than surveys or interviews that require a

one time, short period commitment. However, the

wealth of exposure information that can be obtained

through a diary may not be obtainable through any

other means (NAS, 1991). Often studies use surveys,

questionnaires, and time/activity diaries to understand

human exposure patterns and use this information in

direct and indirect modeling of exposure, and in char-

acterizing the relative distributions of sources and ex-

posures. The American studies NHEXAS and TEAM

are such studies.

Direct observation is generally regarded as the most

accurate method for assessing behavior because it does

not rely on recall, reportage and competency levels of

the participant. However, it is labor intensive and re-

quires well-trained observers and researchers to interpret

the information. Observations are nearly always com-

bined with other methods, particularly interviews, which

may collect survey, questionnaire of time/diary time in-

formation. In Bolivia, for example, direct observations

are used to develop questionnaires to examine time spent

cooking in the morning, in the evening, and the time

when fire is started in the morning and is extinguished in

the morning, and when it burns off on its own. In de-

veloping countries where literacy and concepts of clock

time may be poor, the information obtained with sur-

veys, questionnaires and time/activity diary information

is collected using trained interviewers, observers or video

cameras operated by trained technicians with knowledge

about information needed for the study.

3. The direct method of estimating exposure

The most important attribute of this method is that it

measures personal exposure and exposure concentra-

tions in several major microenvironments. An equally

important aspect of the direct method is its reliance on

questionnaires that provide information to be used for

establishing relationships between exposure and source,

which are then used for formulating risk management

strategies. Employing the proper instrumentation (Sec-

tion 3.1), investigators use the databases to construct

regression models (Section 3.2), or stochastic models

(Section 3.3). Receptor model measurements and tech-

niques can also be applied to the samples acquired by

personal monitors when these samples are amenable to

the needed analyses. The receptor model procedures are

identical to those described above.

3.1. Measuring methodology

Exposure measurements are performed using small

unobtrusive instruments that subjects attach to them-

selves. This point of contact technique also employs

the same type of personal devices as area monitors

to measure exposure concentrations in several major

microenvironments. Microenvironmental sampling mea-

sures integrated personal exposure or exposure con-

centrations, which may be later used to estimate

microenvironmental exposure. The use of information

from questionnaires is as important in this method of

measurement as in the indirect method. The need for

subject cooperation is greater for the direct method of

exposure measurement than for the indirect method

because the subject is required to carry the sampling

device for a relatively long period of time (EPA, 1997).

Exposure measurement techniques are discussed in

depth in another chapter of this issue. Several important

methodological points are:

1. Personal exposure measuring devices must be unob-

trusive, lightweight, robust and accurate. Personal

measuring devices that are heavy, noisy and require

frequent intervention increase the burden on the sub-

jects and lead to a low response rate that biases the

results of a study.

2. Personal exposure and microenvironmental exposure

concentrations used for construction of models and

association with health effects must reflect the same

time period of measurement.

3. A critical element of exposure measurement is the ac-

curacy and precision of personal and area samplers

and the quality assurance, quality control program

used to generate databases employed for model for-

mulation.

Personal PM10, PM2:5 and RSP samples can be col-

lected by established methods using impactor or cyclone

type precipitators, 25.37 mm Teflon (or other type) fil-

ters and 2–4 l/min battery operated pumps that run for

12–48 h per sample. Exposures of thousands of indi-

viduals have already been measured in field studies by

such samplers. Depending on the flow rate and the un-

interrupted sampling time, the sampling assemblies

weigh from 0.5 up to 3.4 kg. The integrated samples are

suitable for gravimetric, and depending on the filter

material, elemental and chemical analyses. Real time

personal PM mass monitors and multi-channel personal

particle counters have also been developed and used in
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limited studies in the field. They are still expensive, but

capable of producing new data of great potential sig-

nificance. Details on instrumentation appear in separate

chapter.

3.2. Regression models

Linear regression models are used to gain insights

about the exposure to a pollutant process, and to relate

exposure levels to its determinants. The measured per-

sonal exposure is the dependent variable, information

obtained from the questionnaires and corresponding

microenvironmental agent concentrations are the inde-

pendent variables. The constructed models are tested for

model significance and coefficient significance using

conventional statistical methods.

Regression model development, using data from di-

rect exposure measurement, follows the conventional

model construction process. The example given here is

an illustration of the methodology employed by re-

searchers in the field. Personal exposures to respirable

PM were measured and modeled to assess implications

for air pollution epidemiology (Spengler et al., 1985).

Stepwise multiple regression methods were used to

construct four predictive models. By choosing only

variables with significant, a ¼ 0:15, contribution to the

model, the first model with n ¼ 225 had only one inde-

pendent variable: ambient RSP, this model was not

significant. The second model added to the ambient RSP

levels two indicator variables: smoke exposure and em-

ployment status. This second model used a sample size

of n ¼ 225, and explained 16% of the variability in

personal exposures, R2 ¼ 0:16. The third model of the

process added to the independent variables of model 2

one more variable: time spent at various microenviron-

ments as indicated in subject daily diaries. The micro-

environments included were home, work, public places,

in-transit and other locations. Only time at work place

and public locations contributed significantly as inde-

pendent variables.

The fourth and most complete model explained 51%

of the variability in personal exposure by adding indoor

RSP concentrations to the model. This model is illus-

trated below:

E ¼ 8:5þ 0:3 ðambient RSPÞ þ 3:1 ðwork timeÞ
þ 5:4 ðpublic timeÞ þ 0:6 ðindoor RSPÞ

The final model does not include smoking exposure

as an independent parameter; the authors assumed that

the inclusion of the indoor variable contains smoke

exposure.

By identifying independent variables that contribute

to the estimation of personal exposure, regression models

associate the personal exposure with potential sources of

exposure. This information may be used to investigate

associations between source and health effects and, ulti-

mately, to formulate risk management strategies. Im-

portantly, using exposure concentrations of other major

microenvironments as the dependent variable similar

regression models can be constructed to determine

sources contributing to microenvironmental exposures.

Microenvironmental exposures to PM obtained from

direct exposure measurement studies have been com-

pared with each other to determine if measurement of

one can be used as surrogate for the others. All com-

parisons of exposure and exposure related information

should be performed using values with matching time

scales.

3.3. Stochastic models

Regression exposure models simulate exposures by

combining pollutant concentrations measured at several

microenvironments with time and activity information

and assess differences of exposure among individuals,

population sub-groups and populations using inferential

statistics. Probabilistic or stochastic models also deter-

mine inter-individual variability of the predicted para-

meter and uncertainty about specific statistics of the

population distribution. Stochastic models generate a

population distribution of exposure to agent(s) and af-

ford the opportunity to compare the population with

specific measurement of groups of interest and concern.

Knowing the exposure distribution of a population

under examination helps respond to the fundamental

concern of the relative position of an estimated exposure

of specific sub-population against that of the general

population. Exposure distributions of sub-populations

denoting group characteristics based on geography,

ethnic background, age, health status or socioeconomic

strata may be compared with the general population

exposure distribution and/or specific points of the dis-

tribution, (Sexton et al., 1995). Distribution points of

importance for comparison purposes include exposures

at or about the middle of the distribution or at or above

the 90th percentile and the most exposed person.

Sources of exposure uncertainty fall in one or more

of three categories, (US EPA, 1992):

1. Scenario uncertainty reflects lack of knowledge to

fully specify the problem due to missing or partial

information.

2. Parameter uncertainty denotes lack of knowledge

regarding the distribution of a model parameter.

3. Model uncertainty is lack of knowledge to fully for-

mulate conceptual and computational models.

Of the three categories of uncertainty, the inhalation

exposure model is widely accepted and is not considered

a source of uncertainty. The recent development of a

new model for estimating exposure to PM, (see the
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introduction section of this chapter) will provide

researchers with the opportunity to estimate model un-

certainty. Scenario uncertainty can be discussed only

when a specific scenario is assessed, thus parameter

uncertainty is the focus of discussion in this section.

Parameter uncertainty may be thought of as a com-

posite of two elements: variability and knowledge

uncertainty. Variable parameters or variability reflect

heterogeneity across people, places and time and affects

precision of exposure estimates and the degree of their

generalization. Knowledge uncertainty, or uncertainty

reflects lack of knowledge or information about pa-

rameters that should be invariant if the perfect mea-

suring means existed. Parameter uncertainty is thought

of as the cause of exposure uncertainty and should be

investigated in each exposure modeling effort.

Probabilistic uncertainty analysis with Monte Carlo

simulations assigns probability density functions to each

parameter and then selects values from these distribu-

tions into the exposure model under consideration. For

inhalation exposure to PM the distribution of each of

the two variables of the classical inhalation exposure

equation is formulated. Thus, microenvironmental, and

or personal concentration and time budget distributions

formulated from direct exposure measurement data-

bases are input distributions to a stochastic model for

estimating exposure to PM.

The initiating step in stochastic model formulation is

to use input to the model variable measurements and

construct either ‘‘custom’’ distributions or curve-fit these

measurements with best-fitted theoretical distribution

function. The procedure for formulating a probabilistic

model is a two-phase process (Bogen and Spear, 1987;

McIntosh et al., 1995). A simulation is carried out by

choosing one realization from the distribution of each

uncertain parameter and then, in the second phase, se-

lecting values or realizations repeatedly from all variable

parameters. Exposure uncertainty is estimated for a

percentile or other statistic from a family of several

simulations, each of which is composed of many itera-

tions. This method is illustrated in Fig. 4 (McIntosh

et al., 1995). The process generates 500 simulations, each

having 1000 iterations, to predict uncertainty about any

percentile of the population distribution. A series of

efforts are underway to use probabilistic models for as-

sessing uncertainty in inhalation exposure to PM esti-

mations, but none has been published as of this time.

4. Discussion and conclusions

Data for an exposure assessment are obtained from

several sources. The indirect method of estimating ex-

posure uses source information from public records,

regulatory agencies, and literature, and obtains meteo-

rological data from existing relevant and representative

databases or generates meteorological information using

models. Exposure studies collect information on subjects

using questionnaires. Such information must be repre-

sentative of the domain of inquiry and is subject to the

scale of available information; experimental design

considerations focus on obtaining representative sample

information of population demographic, time budget,

and activity characteristics using questionnaires.

Estimated PM concentrations in microenvironments

are combined with time spent by individuals at each

corresponding microenvironment to estimate exposure

to PM (see Fig. 2). Computationally, this step of the

Fig. 4. Illustration of the Monte Carlo simulation method for estimating parameter uncertainty and variability. Source: McIntosh

et al. (1995).
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process is easy, yet the interpretation of the exposure

levels generated is not as straightforward. A critical ele-

ment of exposure estimation is selection of a represen-

tative sample of the subject population. Experimental

design issues are applicable to exposure estimations or

measurements for all exposure methodologies.

The experimental design is formulated to satisfy

clearly stated study objectives including criteria of

accuracy and precision of estimates, the measuring

instrumentation, stationary and personal samplers, ques-

tionnaires, models and input to the models variables. A

carefully selected experimental design is employed to

overcome difficulties associated with measuring and es-

timating exposures of a subject population. Samples of

convenience using volunteers, friends or neighbors re-

strict the conclusions of a study. Such studies help test

specific hypotheses but do not provide a basis for for-

mulating distributions of exposures and reaching con-

clusions on the population. Probability based samples or

representative samples provide the desired unbiased in-

formation efficiently.

The objectives of each study determine the exact ex-

perimental design; yet the complexity, heterogeneity and

variability of exposure to agents within a population,

(individuals, time and space) are attributes shared by

almost all exposure experimental designs. Such attri-

butes must be characterized using a representative

sample and an appropriate sample size. Design issues

associated with formulating a national exposure assess-

ment study are elaborated by Callahan et al. (1995).

They discuss factors to be considered in designing a

national exposure study to multiple pollutants and

multiple media determination of sample size as a func-

tion of sample design effect and other factors is discussed

in detail. The conclusion reached is that a multi-stage

probability sampling procedure appears to be applicable

for studies of exposure to multiple pollutant, such as the

NHEXAS study, or for studies of a class of pollutants,

such as the PTEAM study. Further discussion of ex-

perimental design is beyond the scope of this paper; yet

the implications of each exposure assessment clearly

depend on the experimental design, which must coor-

dinate and match the requirements of environmental

health studies that are usually associated.

Exposure models have been developed using either

direct exposure measurements or indirect exposure es-

timations. These models assist investigators in estimat-

ing exposure to PM and its constituents as a function of

a number of independent variables. Furthermore, these

models assist in listing and ranking the determinants of

exposure to PM and in developing risk reduction strat-

egies.

Exposure assessment advocates assert that the perti-

nent variable that links source with health effects is the

exposure. Exposure studies, therefore, should be de-

signed to assist epidemiology investigations. A critical

element of this association is the use of corresponding

averaging times, for short term effects require short term

sampling, while long term effects should be based on long

term averaging of exposures. Current scientific inquiry

attempts to gain insights on whether ambient PM con-

centrations, measured for regulatory purposes, consti-

tute a surrogate for exposure to PM. Conventional

exposure measurements and exposure models may be

and are used to gain insights into to this inquiry. The

alternative approach of categorizing exposure to PM by

its general source category is advocated as the exposure

methodology that may establish the association between

exposure to PM and health effects which has not yet been

established by the other methods of exposure analyses.

Source apportionment of personal exposure to PM is

a potentially powerful policy tool that combines expo-

sure estimates or measures with information from time

activity data and source information derived from

questionnaires to construct regression models and other

tools in order to relate exposure to PM with its sources.

Combining exposure assessment and receptor source

modeling has been called total exposure and significant

source assessment (TESSA) (Smith and Eglerton, 1990).

Basically, this involves receptor–source modeling using

personal or time-weighted microenvironmental filters to

perform exposure apportionment. Such an approach

allows determination of the relative contributions of

each of the significant sources categories to the daily

exposure of representative members of the population,

rather than just the relative contribution of differ-

ent source categories to concentration at a particular

static receptor, as in conventional receptor–source

modeling.

Exposure can be reduced by reducing excessive con-

centrations or by changing the times and locations

where people are exposed. The latter option is seldom

available except for a few very hazardous industrial

occupations. Reducing exposure concentrations requires

reduction of indoor and outdoor source emissions.

Source contributions to exposure concentrations are

estimated by both source and receptor models. Both

models should be applied, where possible, as they pro-

vide independent concentration estimates that can be

used to validate each other. Discrepancies between the

two independent source contribution estimates often

help to indicate the nature of the discrepancy. Previous

studies have found that most discrepancies are caused by

inaccuracies in emission inventories against which the

amounts of required reductions are measured. A rec-

onciliation of these discrepancies leads to a greater re-

duction in exposure concentrations per cost unit of a

pollution control measure.

Much of the cost of an exposure study depends on

the degree to which estimates are aggregated in space,

time, and chemical specificity. Measurements at a rela-

tively small number of outdoor sites and indoor micro-
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environments must be extrapolated to a larger number

of location types. Particle sampling on filters are typi-

cally acquired at non-sequential intervals (e.g., every

sixth day) and for durations of 24 h or longer. Particle

mass concentration is less costly to measure than de-

tailed chemical composition, even though it is believed

that certain chemicals have more deleterious effects than

others. Although source modeling achieves better reso-

lution, it suffers from inaccuracies in the absence of some

measurements over which to evaluate its results. Expo-

sure studies that use available data or reasonable en-

hancements to those data typically have substantial

aggregation with respect to populations, exposure time,

the number of microenvironments represented, and the

chemical constituents of the particles. These results may

be sufficient to make good decisions, but the degree of

aggregation must be recognized and described relative to

the decisions being made.

Empirical exposure models have been formulated

using databases from exposure studies developed under

certain environmental, cultural and ethnic conditions.

Care must be exercised when these models are used for

conditions different from the ones used to formulate the

models. It is recommended that properly designed

studies be performed to estimate the magnitude of rel-

evant variables under different environmental, cultural

and ethnic conditions. Examples of such needs include

the determination of building air exchange rates, of

emission rates of indoor sources such as cooking facili-

ties, of time budget and time activities in individual

countries and others.

Exposure estimates can be made with existing data

and with minimal enhancements to those data. Most

areas have at least some estimate of emissions rates,

some measurements of ambient concentrations, and

some knowledge of transport meteorology that can be

used to estimate receptor concentrations and the source

emissions that cause them. Prognostic meteorological

models can supplement existing wind, temperature and

humidity measurements to estimate transport and mix-

ing. Particle filters acquired from monitoring networks

can be analyzed for some elements, ions, and carbon to

obtain a material balance that indicates and verifies

emissions inventories. These data can be combined into

a conceptual model that can guide immediate decision-

making and determine the extent to which additional

data must be acquired.

Independent observational data or methods should

be used to evaluate the performance of exposure as-

sessments as a standard element of the study. For ex-

ample, source modeling predictions of source category

contributions can be checked with application of re-

ceptor modeling techniques using independent observa-

tional data; indirect exposure assessment predictions can

be compared to available direct exposure data; as-

sumptions regarding the region of representativeness of

direct data can be evaluated against indirect model

predictions.

A reconciliation analysis should be performed to

identify and address weakness of previous modeling

studies or iterations. The discrepancies between model

predictions and observations yield valuable information

regarding shortcomings of the analysis. Iterative at-

tempts should be made to improve model performance

by applying the information learned in previous studies.

Although the definition of an approach that is well-

balanced and consistent with the program resources is

necessary, it is essential that the methodology meets a

minimum level of performance. It is necessary to un-

derstand and identify the main issues needing to be ad-

dressed, and then design a modeling approach to meet

those needs. The use of a modeling approach designed

solely to fit available study resources, without consid-

eration of the technical relevance of the techniques is

unacceptable.

Measurement is the preferred means to obtain data.

However, it is often the case in developing countries that

these measurements do not exist or are not representa-

tive or of adequate quality. Often new measurement

programs are too expensive and time-consuming to

conduct. It is feasible to mathematically simulate some

of the data requirements for use in modeling. These

simulations can include generation of an emissions

database based on mass-balance data or a meteorologi-

cal database derived from NWP model outputs. Data

from these sources are relatively inexpensive, fast to

generate and have a more comprehensive coverage

(spatial and temporal) than measured data.

Every element of an exposure estimate needs to be

balanced with other elements of the study in terms its

level of detail, complexity and associated uncertainty.

For example, a very detailed treatment in an individual

module within a modeling study may not improve the

overall uncertainty of the study when large uncertainties

exist in other elements of the study. Sensitivity analyses

can be used to estimate the relative level of uncertainty

associated with individual elements of the study, and

resources focused on those elements where the greatest

benefit obtained.

Technological advances in the field should be utilized

to enable the practitioner to use the most up-to-date

tools and methodology to determine exposure assess-

ments. For example, models with limited applicability

should not be utilized if there are more sophisticated,

accurate models available with which to conduct the

study. This will save valuable time and resources and

will furthermore minimize any errors or interpretation

problems that arise when technologically dated models

are used to determine exposure concentrations.

Exposure models were formulated from data ob-

tained from either the indirect or from the direct method

of estimating exposure to PM and its constituents. Both
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of these methods require information obtained from

questionnaire, the difference relates to the methodology

of obtaining exposure data. The indirect method is less

expensive, but it is limited by the very fact that it gen-

erates data from very limited information and few

measurements. The direct method uses measurements,

but the generation of data is expensive and requires

subject participation, which is a source of concern re-

garding the experimental design and analysis. To op-

timize cost and accuracy, it is recommended that

investigators employ both methods simultaneously,

when possible, and use measurements from the direct

method to verify estimations of the indirect method.

Appendix A. Model formulations

Following are conceptual formulations for exposure,

source, receptor, and emissions models. Models inputs

and model outputs are identified, as are the indices for

pollutant, source type, time period, subject, receptor

location, and individual source type. These indices are

indicated for all models as follows:

i pollutant

l subject

j source type

m receptor location

k time period

n source sub-type

Exposure model

Eil ¼
XKoutdoor

k¼1
Cikmtklm þ

XKhome

k¼1
Cikmtklm þ

XKtransportation

k¼1
Cikmtklm

þ
XKworkplace

k¼1
Cikmtklm

Output

Eil exposure of subject l to pollutant i

Input

Cik concentration of pollutant i over time period k

at location m for subject l

tklm time period k spent by subject l at location m

Source model

Cikm ¼
XJ

j¼1

XN

n¼1
DjknTijknFijQjn

Output

Cikm concentration of chemical species i for time

period k at location l

Input

Djkn dispersion and mixing of emissions between

source jn and location m over for time period k

Tijkn transformation of pollutant i between source jn

and location m corresponding to time period k

Fij fractional quantity of pollutant i in source

type j

Qjn total emissions from source jn

Receptor model

Cikm ¼
XJ

j¼1
FijSjkm

Sjk ¼
XN

n¼1
DjknTijknQjn

Output

Sjkm contribution from source type j at location m

for time period k

Cikm concentration of chemical species i for time

period k at location l

Fij fractional quantity of pollutant i in source

type j

Emissions model

Ejkl ¼ RjknKjknAjknð1� PjknÞ

Output

Qjkn emissions rate from source type j correspond-

ing to time period k and area n

Input

Rjkn rate of emissions (emissions factor) for a spe-

cific size fraction per unity of activity for

source type j corresponding to time period k

and location of sub-type n

Kjkn particle size reduction applied to Rjkn when Ejkn

is intended to represent a particle size fraction

different from that represented by Rjkn (e.g.,

when PM2:5 emissions are desired and emis-

sions factors are only available for PM10 or

TSP). This factor is likely to be different for

different source types j, exposure periods k, and

locations of sub-type n

Ajkn activity that causes dust emissions for source

type j over corresponding to time period k for

source sub-type n

Pjkn fractional reduction due to emissions controls

applied to source j over time period k and lo-

cation of sub-type n

Each of the components of Qjkn is empirically derived

from a limited number of tests. These tests are intended

to represent the entire population of emission factors,

activity levels, size distributions, and emissions reduc-
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tion effectiveness. Averaging periods are typically for a

year or season and averaging areas are typically the sizes

of counties or states. Each of these components of fu-

gitive dust emission rate contains uncertainties when

applied to a specific situation.
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